Introduction	Small Model	Full Model	Conclusion

Insider Trading and Dynamic Informational Efficiency

Isaac Swift

Hong Kong Baptist University

Southern Economic Association Meetings 20 November 2021

Introduction ●00	Small Model	Full Model	Conclusion O
Background			

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

The role of private information in financial markets and the informativeness of prices

Introduction ●00	Small Model	Full Model	Conclusion O
Background			

The role of private information in financial markets and the informativeness of prices

There are many theoretical and empirical studies on the effects of insider trading and regulation

◆□ → < @ → < E → < E → E の Q @ 2/14</p>

- "Insider trading tax"
 - More asymmetric information
 - Less liquidity
- More informative prices

Introduction ○●○	Small Model	Full Model	Conclusion O
Mativation			

What we know

IVIOLIVATION

- More informative prices is good
- More liquidity is good

What we don't know much about distributional questions

<ロ> < 母> < 目> < 目> < 目> < 目 > のへで 3/14

- Dispersion of private information
- Dispersion of price informativeness
- Dispersion of timing of information revelation

Introduction	Small Model	Full Model	Conclusion
00●	000		O
Question			

Today we'll seek to understand the first type of dispersion

• We can talk later about the answers to the second and third questions

・ ・ ● ・ ・ = ・ ・ = - つへで 4/14

Introduction	Small Model	Full Model	Conclusion
00●	000		O
Question			

Today we'll seek to understand the first type of dispersion

• We can talk later about the answers to the second and third questions

Is it better for one trader to have very good private information or for two traders to each have a little private information?

(ロ) (母) (目) (目) (日) (4/14)

- Shut down the rat race effect
- Does competition matter?

Introduction	Small Model	Full Model	Conclusion
000	●00		O
Setup			

Consider a little Kyle model.

- There is an asset with common value $v = v_1 + v_2$ with $v_1, v_2 \sim_{iid} \mathcal{N}(0, \sigma_v^2)$
- There is a mass of noise traders that trade for exogenous reasons, $u \sim \mathcal{N}(0, \sigma_u^2)$
- Two traders observe private information and submit trades, x₁ and x₂
- A perfectly competitive market maker observes only the total demand, $z = x_1 + x_2 + u$, and chooses a price
- All players are risk neutral

Introduction 000	Small Model ○●○	Full Model	Conclusion O
Informed Tr	ader's Problem		

Suppose the market maker and trader 2 are using linear strategies, $p = \lambda z$ and $x_2 = \beta_2 v_2$.

The informed trader can solve their problem pretty quickly

$$\max_{x_1} \mathbb{E}\left[(v_1 + v_2 - p)x_1 \right] = \max_{x_1} \mathbb{E}\left[(v_1 + v_2 - \lambda(x_1 + x_2 + u))x_1 \right]$$
$$= \max_{x_1} v_1 x_1 - \lambda x_1^2$$

Solving,

$$x_1^* = \frac{1}{2\lambda} v_1 \tag{1}$$

<□ > < □ > < □ > < Ξ > < Ξ > Ξ の < ⊙ 6/14

Introduction	Small Model	Full Model	Conclusion
000	○○●		O
Dispersion D	oesn't Matter?		

Other players

- Informed trader two is exactly the same $x_2 = \frac{1}{2\lambda}v_2$
- Total demand is $\frac{1}{2\lambda}(v_1 + v_2) + u$
- The market maker sets price equal to the expected value of the asset

Introduction	Small Model	Full Model	Conclusion
000	00●		O
Dispersion Do			

Other players

- Informed trader two is exactly the same $x_2 = \frac{1}{2\lambda}v_2$
- Total demand is $\frac{1}{2\lambda}(v_1 + v_2) + u$
- The market maker sets price equal to the expected value of the asset

What if there was only one informed trader?

- Suppose trader 1 knows both v_1 and v_2 and trader 2 knows nothing
- The problem looks exactly the same in terms of their information $x = \frac{1}{2\lambda}(v_1 + v_2)$
- The demand contains the same information and thus the market maker will respond in the same way

Introduction	Small Model	Full Model	Conclusion
000		●00000	O
Information A	cquisition		

Dispersion of private information doesn't matter, but dispersion of opportunities to acquire information does matter

- Unknown asset value $v \sim \mathcal{N}(0, \sigma_v^2)$
- A trader privately observes a signal $v + \epsilon$ with $\epsilon \sim \mathcal{N}(0, \sigma_{\epsilon})$ at cost $c(\sigma_{\epsilon}^2)$
- The trader also observes their private benefit of the asset, $\theta \sim \mathcal{N}(\mathbf{0}, \sigma_{\theta}^2)$
- The market maker observes total demand, z = x + u, as before and chooses a price equal to the expected value

Introduction	Small Model	Full Model	Conclusion
000	000	o●oooo	O
Market Maker's	Problem		

Suppose the insider is using a linear trading strategy, $x = \beta_1(v + \epsilon) + \beta_2 \theta.$

Price is equal to expected value

$$p = \mathbb{E} [v \mid z]$$

$$= \mathbb{E} [v \mid \beta_1(v + \epsilon) + \beta_2 \theta + u]$$

$$= \frac{Cov(v, z)}{V[z]} z$$

$$= \frac{\beta_1 \sigma_v^2}{\beta_1 \sigma_v^2 + \beta_1 \sigma_\epsilon^2 + \beta_2 \sigma_\theta^2 + \sigma_u^2} z$$

$$= \lambda z$$

< □ ▶ < @ ▶ < E ▶ < E ▶ E のQ @ 9/14

Note that λ is a decreasing function of σ_{ϵ} .

Introduction	Small Model	Full Model	Conclusion
000	000	oo●ooo	O
Insider's Problem			

The informed trader maximizes expected profits after observing the signal, $\tilde{v} = v + \epsilon$.

$$\max_{x} \quad \mathbb{E}\left[\left(v+\theta-p\right)x\right] \\ = \max_{x} \quad \mathbb{E}\left[\left(v+\theta-\lambda(x+u)\right)x\right] \\ = \max_{x} \quad \left(\frac{\sigma_{v}}{\sigma_{v}+\sigma_{\epsilon}}\tilde{v}+\theta\right)x-\lambda x^{2}$$

This gives a linear trading strategy.

$$x^* = \frac{1}{2\lambda} \left(\frac{\sigma_v}{\sigma_v + \sigma_\epsilon} \tilde{v} + \theta \right) \tag{2}$$

Introduction	Small Model	Full Model	Conclusion
000	000	ooo●oo	O
Profits			

To find the optimal information acquisition strategy, we need to compute the expected profit of receiving signal with noise σ_{ϵ} .

$$\begin{split} \pi &= \mathbb{E}\left[\left(\nu + \theta - \rho\right)x^*\right] \\ &= \frac{1}{2\lambda} \mathbb{E}\left[\left(\nu + \theta\right)\left(\frac{\sigma_{\nu}}{\sigma_{\nu} + \sigma_{\epsilon}}\tilde{\nu} + \theta\right) - \frac{1}{2}\left(\frac{\sigma_{\nu}}{\sigma_{\nu} + \sigma_{\epsilon}}\tilde{\nu} + \theta\right)^2\right] \\ &= \frac{1}{4\lambda}\left(\theta^2 + \frac{\sigma_{\nu}^3}{2}\frac{\sigma_{\nu} + 2\sigma_{\epsilon}\sigma_{\nu}}{(\sigma_{\nu} + \sigma_{\epsilon})^2}\right) \end{split}$$

< □ > < @ > < ≧ > < ≧ > ≧ ⑦ Q ↔ <u>11/14</u>

Introduction	Small Model	Full Model	Conclusion
000		0000●0	O
Results			

There are three terms in the information acquisition problem.

$$\max_{\sigma_{\epsilon}} \quad \frac{\theta^2}{4\lambda} + w(\sigma_{\epsilon}) - c(\sigma_{\epsilon}) \tag{3}$$

< □ ▶ < □ ▶ < ≧ ▶ < ≧ ▶ E のQ @ 12/14

- $c(\sigma_{\epsilon})$ is the cost of acquiring information
- $w(\sigma_{\epsilon})$ is the additional trading profit from having the information
- $\frac{\theta^2}{4\lambda}$ is the liquidity cost of more information

Introduction	Small Model	Full Model	Conclusion
000		oooooo●	O

The Information Acquisition Arms Race

Every trader chooses how much information to acquire

- Acquiring more information leads to lower liquidity
- Lower liquidity is a negative externality on everyone

< □ ▶ < □ ▶ < ■ ▶ < ■ ▶ < ■ ♪ ■ のへで 13/14

• There is an over-acquisition of information

Introduction	Small Model	Full Model	Conclusion
000	000		•
Conclusion			

<ロト < @ ト < 三 ト < 三 ト 三 の へ C 14/14

More dispersion of information among traders

Doesn't matter

More dispersion of information acquisition opportunities

- Lower welfare among traders
- More informative prices

The same thing would work in any kind of model.