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Abstract

An agent is engaged in a sequential search problem. Rather than the options arriv-

ing randomly the order is chosen by another player. The agent must use the information

that the order in which options are presented is being chosen strategically by someone

with potentially conflicting preferences. The model is built off the framework of the

classic secretary problem for tractability. In equilibrium, either a low-ball option is

presented first followed by increasingly attractive options for an unknown amount of

time, the best option is presented first followed by each option getting successively

worse, or the ordering is a mix of the two. It is also shown that the agent is sometimes

made better off by giving up their decision power and letting the other player chose

for them. Applications include recommender systems, bargaining, and countless other

economic situations where an agent must choose an ordering of objects.

1 The Secretary Problem

Though not the typical approach, allow my to first introduce the classic secretary problem

and its elegant solution. I will then present and motivate my problem which builds off
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of it. There have been many papers working on various extensions to the famous secretary

problem, also known as the marriage problem or the Sultan’s dowry problem. As background

information, allow me to briefly discuss the secretary problem and its elegant solution before

I introduce my recommendation game that builds off of it.

The secretary problem is an optimal stopping problem where you only observe ordinal

rankings of the options. Here is the story. You would like to hire a new secretary. There

are N candidates for the job. Your objective is to hire the best of the N candidates. There

are two twists that make the problem more difficult. First, you interview the candidates

sequentially and must decide whether to give them the job immediately. You interview the

first candidate. Then you decide if you want to give them the job or not. If not, then you

get to interview the second candidate. If you have moved on you cannot later go back and

hire the first candidate that you passed up. They have already started working somewhere

else. The second twist is that even after interviewing a candidate, you don’t know exactly

how good they are. All you can tell when you interview a candidate is their ordinal ranking

among candidates you have seen so far. Perhaps you don’t really have a good understanding

of the job or qualifications. For example, the first candidate comes in and says they can

type 50 words per minute. Maybe you aren’t really familiar with words per minute. You

can’t tell if that is fast or not. The second candidate comes in and says they can type 60

words per minute. You still don’t really know if that is fast or not, but you can tell that it

is better than the first candidate. So each time you see a new candidate, you can tell if they

are better or worse than each candidate you have seen so far, but that is all you can tell.

There are papers that remove or change one or both of these rules, but this is the core

version of the problem. Sometimes the story is told that each candidate is a relationship

you are in and you need to decide whether to marry this person or not. The question is thus

trying to find the optimal stopping time rule when you only observe the ordinal rankings of

the candidates.
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1.1 Solution

While the problem is interesting, just as much of the problem’s popularity may be driven by

the fact that the solution is so elegant. It is optimal to use a cutoff strategy. You reject the

first k candidates automatically. Then you will accept any candidate after that that is the

best you have seen so far. The probability of getting the best candidate from this strategy

is

prob =
1

N

N∑
i=k+1

k

i− 1
. (1)

The best candidate has a 1
N

chance of being in each position. If that position is k + 1 or

later, you will select it as long as you haven’t already selected one. You won’t have selected

one as long as the best up until that point was in the first k positions. The probability of

this is k
i−1 . For any given N , you can find the value of k to maximize that probability.

As N grows, there probability of any particular candidate being the best is going to zero.

It might seem hopeless to win with a non-vanishing probability for large N . If there are 20

million candidates, how can you ever be lucky enough to find the right one? The amazing

thing is that the simple optimal strategy remains successful for even very large N . For large

N , and analytic solution is possible. Call x = k
N

, the fraction of candidates initially rejected.

As N goes to infinity, this probability converges to a Riemann integral

prob→ x

∫ 1

x

1

t
dt = −x log(x) (2)

This implies as N grows, the optimal fraction to initially reject, x∗, is approaching 1
e
. Co-

incidentally, the probability of choosing the best candidate with this simple rule is also

asymptotically approaching 1
e
. No matter how many candidates there are, you can win the

game about 37% of the time by simply rejecting the first 37% of candidates then accepting

once you see a candidate that is the best so far.
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2 The Recommendation Game

I will now modify the secretary problem to make it a two player game. Another player (rec-

ommender or R) gets to go first and choose the order in which the candidates are presented.

The second player (decision maker or DM) then plays just like in the original secretary

problem except that they know the order has been chosen by the other player.

The decision maker’s problem is very similar in setup to the secretary problem. Each

round the DM observes the ordinal ranking of another option and chooses whether to accept

or reject. Call hni the ranking of option i among the n options seen so far. The first option

is automatically the best so far, so h11 = 1, h21, h
2
2 ∈ {1, 2}, and so forth. A partial history

can be represented hn = (hn1h
n
2 . . . h

n
n). The set of total histories for the DM, H, is the set

of N ! permutations of the numbers {1, 2, . . . , N}. We must note that the partial histories

hn do not converge to the total history hN as n goes to N . Each time DM observes another

option, you don’t simply add another number to the end to get hn+1. This new option is

better or worse than every option you’ve seen. So all the elements of hn, which are relative

ranks, could change. DM’s strategy is a mapping from partial histories into a accept or

reject decision, σ : hn → [0, 1], with a fractional value representing a mixed strategy. It is

also required that
∑N

n=1 σ(hn) = 1 for all histories, h. The DM must select one and only one

option.

Call vi the payoff to DM of selecting their ith best option overall. In the classic secretary

problem, v1 = 1 and vi = 0 for i > 1. I will simply assume vi ≥ vj if i ≥ j, or that you get a

weakly higher payoff for selecting a better option. If this weren’t the case, it would call into

question what it means for and option to be “better” in the first place. The objective can

now be rewritten as

max
σ

∑
h∈H

N∑
n=1

σ(hn)vhnµ(h). (3)

µ(h) is the probability of each possible permutation. In the classic secretary problem, µ(h)

has a constant value of 1
N !

because every permutation is equally likely. Now, this probability
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is controlled by the other player.

This other player is the recommender (R). R observes the N options and chooses an

ordering. R sees not only their own preference over the N options, but also knows DM’s

preference ranking. R’s information can also be written as a permutation, p ∈ H. Denote

p = (p1p2 . . . pN), with pi being the preference ranking for R of DM’s ith best option. So if

p1 = 3 it means that DM’s number 1 choice is R’s number 3 choice. We will denote wi the

payoff to R of their ith best option being selected. The objective can be written as

max
h(p)∈H

∑
p∈H

N∑
n=1

σDM(hn)wphnf(p) (4)

with f(p) being the distribution over possible joint preference rankings, p. If R’s preference

and DM’s preference over options are independent of each other, f(p) would simply be a

constant 1
N !

. In general, they may be correlated.

While the problem quickly got notationally ugly, it is still conceptually simple. R chooses

an order for the options. DM observes the options sequentially in the chosen order and

chooses to accept or reject each option. Both players want to maximize their payoff coming

from the option selected. If you understand the game, you can still follow the arguments

and results without diving into the necessary notation.

2.1 Motivation

Allow me to now very briefly motivate this problem before we jump into searching for a

solution. There are numerous papers on the secretary problem. Two good reviews of the

literature are Freeman (1983) and Ferguson (1989). In particular, Gilbert and Mosteller

(1966) solve the zero-sum version of my all or nothing recommendation game special case

using the cyclic Latin square, and my presentation of the secretary problem background

information largely follows their paper. There are game theoretic versions of the secretary

problem with multiple searchers. They may be competing as in Immorlica et al. (2006) or
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working as a committee as in Alpern and Gal (2006), but none have a recommender as in

this paper.

Complex recommender systems are now commonly used, but no paper studies them in

this type of sequential setting. A few recent recommender system papers for reference include

Che and Hörner (2018), Xu and Yang (2023), and Kremer et al. (2014). Amazon, or any

online shopping site, has many results that match your search and you may be interested in.

The site needs to choose the best order in which to present you with the results. Furthermore,

the site’s preference may not be perfectly aligned with the customer. The customer would

like to find the best deal while the site looks to maximize profit. Similarly, Netflix and the

like need to choose an order in which to list different options to stream. In addition to

recommender systems, you could imagine this game as a bargaining problem. One party has

several offers they could make and needs to choose the order in which to present them. Do

you start with your best offer or start with a low offer and progressively get higher? What

should the second party’s strategy be in regards to accepting or rejecting these offers. While

there is a whole literature on bargaining (see classics such as Nash (1950), Rubinstein (1982),

and Wilson (1987)), no paper looks at the sequencing of offers in this type of way.

The world is full of economic problems that involve choosing an ordering of options or

objects. It could be where to locate goods in your store, how to write a good paper, etc.

Attention paid to such non-cooperative sequencing problems in economics has been sparse

(though there is a literature on cooperative sequencing games with linear payoffs, especially

in operations research, see Curiel et al. (1989), van Beek et al. (2023), or Curiel et al. (2002)

for a review). Part of the reason is that these problems are difficult to solve. The discreteness

of the problem makes maximization more difficult and analytic solutions more rare. The size

of the problem makes computation difficult. The recommender is choosing a mapping from

preferences (cardinality is N !) to an ordering (also N !). This gives (N !)2 possible actions

for one of the players, and the other players action space is also far from small. For even

moderate values of N , brute force search for an equilibrium is impossible. I hope that others
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will find insights in this paper that will help them to solve similar discrete problems.

2.2 Results

I am looking for the Nash equilibria. First I will put bounds on possible equilibrium payoffs.

Using those bounds, I characterize when no pure strategy equilibrium exists and construct

a mixed strategy equilibrium that exists for all parameter values.

The first bound on payoffs is easy.

Lemma 1. The DM can guarantee themselves a value of at least v̄ = 1
N

∑N
i=1 vi.

If DM simply randomized the round in which they accept with equal probabilities, this

strategy would guarantee them a payoff of v̄ regardless of R’s strategy. This typically isn’t the

optimal strategy, it it assures that DM must receive a payoff of at least v̄ in any equilibrium.

The second bound is a little bit trickier to see.

Lemma 2. R’s best response to any pure strategy of DM gives R a value of w1.

No matter what pure selection strategy DM is using, there is a way for R to arrange

the sequence to completely take advantage. R can always assure their top choice is selected,

holding fixed the strategy of DM. The proof can be found in the appendix.

We still don’t know if an equilibrium exists in pure strategies, but we have a lower bound

on the possible payoffs of each player. The existence issue is going to hinge on the correlation

of preferences between R and DM. Call ρi the expected value to DM of R’s ith best option.

While ρi as defined is not the a standard correlation coefficient, it captures the necessary

features of the distribution of joint preferences, f(p), for understanding equilibria. If R

and DM have independent preferences, ρi will equal v̄ for all i. I will refer to R and DM’s

preferences as aligned if ρ1 > v̄ and as opposed if ρ1 < v̄ with the word weakly being added

if the inequality is weak. The zero-sum version of the game would have ρi = −wi for all i.

Two immediate results come out of the preceding lemma.
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Proposition 1. The payoffs for R and DM in any pure strategy equilibrium must be (w1, ρ1).

Corollary 1. If preferences are opposed, there cannot be any pure strategy equilibrium.

The first result is a consequence of Lemma 2 and the second result follows from the first

result and Lemma 1.

The key to finding an equilibrium is a strategy for R that will consistently offer the

average payoff to DM while revealing no useful information. Suppose R has a strategy

where DM can do no better than randomly pick a round to accept. This would guarantee

the average payoff for both R and DM. Since DM is accepting randomly, no strategy for

R can get a better than average payoff. Both players would have everything in their best

response. Thus we would have an equilibrium. Note that R just randomly choosing with

equal probability on all orderings does not achieve this objective. We already saw in section

2 that against a random order DM can do significantly better than picking a random round

with equal probability. With the zero-one payoffs, a pure random guess gets an expected

payoff of 1
N

while the optimal strategy can get 37% even for very large N .

The strategy that R needs to use is what I will call the maximal risk ordering strategy

(MRO). In each round R will randomize between submitting DM’s best remaining option

with probability q and DM’s worst remaining option with probability 1− q. Let

q =
ṽ − vmin

vmax − vmin
(5)

where ṽ, vmax, and vmin are the average, the best, and the worst of the remaining options

respectively. For the first round, ṽ = v̄, vmax = v1, and vmin = vN .

First note that in each round, the expected value of accepting is equal to the average of

all remaining values.

vmaxq + vmin(1− q) = ṽ (6)

If the payoffs (vi) were all evenly spaced (order statistics from a uniform distribution), then

the q would always be equal to 1
2
. When the payoffs are not evenly spaced the value of q
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is adjusting to that randomizing over the best and worst remaining option is the same in

expectation as randomizing over every remaining option.

Second, see that this ordering strategy reveals no “useful” information to DM. Informa-

tion is revealed each round. In fact, in round n DM knows that exact overall ranking of

each of the n − 1 options that came before. However, this order ensures that none of this

information is useful in distinguishing the current option from any other remaining option.

Among the previous options, some were the highest and some were the lowest. All remaining

options are going to in between the high options that have been seen and the low options

that have been seen. Thus, the remaining options are indistinguishable. At every point the

remaining options are all grouped together in the ranking. Nothing from the middle of them

has been observed to separate them.

This turns out to be the critical condition.

Theorem 1. It is always an equilibrium for R to play the maximal risk ordering and for

DM to randomize with equal probability of which round to accept.

I will refer to this as equilibrium A.

2.3 Zero-Sum Game

I have constructed an equilibrium to the game that always exists. However, there is no

guarantee of uniqueness. In the zero-sum special case of the game, at least the payoff is

unique. The zero-sum case is when the distribution f(p) is degenerate on (N,N−1, . . . , 2, 1)

and vi = −wN−i+1. On other words, the players have a completely opposite preference

ranking and the magnitudes are the same.

Now equilibrium A gives the unique equilibrium payoffs (−v̄, v̄). We already know from

Lemma 1 that DM must get a payoff of at least v̄ in every equilibrium. Furthermore, we can

see from the construction of the maximal risk ordering that R can keep DM’s payoff from

going any higher than v̄. Since the game is zero-sum, these two results put an upper and

lower bound on DM’s payoffs of v̄. This payoff is obtained by equilibrium A.
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3 All or Nothing

We have found an equilibrium of the game, but we have no assurance that it is the only

equilibrium or that it is the best equilibrium in any sense of the word. Let us now turn our

attention to a special case of the game in line with the classic secretary problem where we

can determine much more. Suppose now that the game is all or nothing. Each player gets

a payoff of one if their top choice is chosen and zero otherwise. That is, v1 = w1 = 1 and

vi = wi = 0 for all i 6= 1. Keep in mind that DM’s number one choice and R’s number one

choice are not necessarily the same option.

There is now a large amount of indifference. Every option except the top choice is equally

good. Note that I’m not saying these options are indistinguishable, only that they give the

same payoff. This indifference is going to give us a lot of freedom to modify the maximal risk

ordering and still have an equilibrium. Since payoffs are only zero or one, in round n ṽ is equal

to 1
N−n+1

if the top choice is among the remaining options and 0 if it is not. This means

that the maximal risk ordering would present the top remaining option with probability

1
N−n+1

and the bottom remaining option with probability N−n
N−n+1

. I will now construct a

new equilibrium strategy that doesn’t present the bottom choice with probability N−n
N−n+1

but

rather just presents one of the choices that give a payoff of zero with that probability. The

key to this equilibrium strategy is the following cyclic Latin square.

5 4 3 2 1

4 3 2 1 5

3 2 1 5 4

2 1 5 4 3

1 5 4 3 2

Each row of the square is a sequence of numbers that decrease by one, until reaching 1,

then they reset at N . Think of these numbers as the rank ordering of options for DM. The

options are in increasing order. Each option is better than the previous one, except that it

wraps around after the best one. Each row represents one such sequence of options with a
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different starting point.

Imagine that the sequence of options presented was a randomly selected row of the cyclic

Latin square. DM cannot get a score higher than 1
N

with any selection strategy. This is

because no useful information comes until it is too late. All you see is that every option is

the best one so far, until the point when you’ve passed the top option. At any point in time,

the best option is equally likely to be the current option or any one of the future options.

We can use backward induction to see why this means there is no profitable strategy or just

state that it follows from Lemma 3.

We now have another equilibrium where R chooses a random row from the cyclic Latin

square and DM random selects which round to accept. I will call this equilibrium B. This

new equilibrium isn’t very different from the one we already constructed in the general case,

but we can expand it to look at all the interesting equililbria in this special case. Particularly,

I would like to find the best equilibrium for R. The best equilibrium is going to be dependent

of the correlation of preferences between R and DM. Take first the case where R and DM have

weakly aligned preferences (ρ ≥ 1
N

). In fact, we will need a slightly stronger assumption.

Call µ the distribution over DM’s ranking ({1, 2, . . . , N}) of R’s top choice. Let us assume

that µ1 ≥ µi for all i ∈ {1, 2, . . . , N}. This implies that preferences are weakly aligned. The

assumptions is that R’s top choice is at least as likely to be DM’s top choice as any other

ranking. The case of independent preferences is still allowed by the assumption.

With this assumption, the best equilibrium for R is easy to find. Rather than randomly

selecting a row from the cyclic Latin square, R can select the row that begins with their own

most preferred option. This first option is at least as likely to be DM’s top choice as any

other choice. Thus, DM gets a payoff of at least 1
N

from accepting the first option. If DM

rejects the first option, they will simply be facing a random row of the cyclic Latin square.

They will be able to do no better than the average of the remaining options, which is less

than or equal to 1
N

. Thus is is an equilibrium for R to choose the row of the cyclic Latin

square that begins with their own top choice and for DM to accept the first option presented.
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The payoffs in this equilibrium are (1, ρ1).

3.1 Opposing Preferences

Consider now the case where preferences are opposed. Equilibrium B is still an equilibrium

(as is equilibrium A). The payoffs to the two players in equilibrium B is ( 1
N
, 1
N

) because it is

completely random which option ends up being selected. The important thing to notice is

that the payoffs to both players are decreasing in the number of available options, N . Both

players would be made better off if there were fewer options. Imagine they could just throw

out one option that isn’t either player’s top choice, then play the same equilibrium with the

remaining options. Everyone would be happy with this.

In fact, the best equilibrium for either player in this game only involves two options. R

will randomize with equal probability over putting their own top choice first and DM’s top

choice second or putting DM’s top choice first and their own top choice second. The order

of all options after the second is unimportant. DM will randomize with equal probability

over accepting the first or second option. This is an equilibrium. As DM’s top choice is

among the first two options and could equally likely be either one, any strategy that puts

probability one on selecting one of the first two is in the best response. If DM is randomizing

equally of selecting one of the first two, and strategy for R that puts their own top choice in

one of those first two spots is in their best response.

This equilibrium gives a payoff of 1
2

to both players. Neither player is going to get higher

that 1
2

in any equilibrium with preferences are opposed. To get hire would require DM to

accept with a probability above 1
2

under some condition. Following the logic of Lemma

2, R can put their own top choice in this spot. Accepting in this spot now gives DM a

payoff of ρ1 which is below average. Thus, it is contradictory for DM to accept in this spot

with any probability. Interestingly, the payoff that DM receives in R’s preferred equilibrium

with opposed preferences (1
2
) is higher than DM’s payoff in R’s preferred equilibrium with

independent or slightly aligned preferences (ρ1).
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Figure 1: This graph shows the payoffs in R’s preferred equilibrium. The horizontal red
line on top is when preferences are positively correlated. The blue dot in the center is
when preferences are negatively correlated. The vertical green line in the upper left is when
preferences are negatively correlated and R has commitment power.
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One final note in this section is that the equilibrium is still not efficient. Each player is

getting their top choice with probability 1
2
. However, as long as we aren’t in the zero-sum

case, there is still some probability that the players agree on the top choice. Thus, in an

efficient allocation these probabilities would add up to more than one. There are times when

both players agree on the top choice, it gets placed in one of the first two spots, but DM

chooses the other of the first two spots. Herein lies the inefficiency.

3.2 Commitment

In this section I consider how the game would change if R could commit to an ordering

strategy and find their best commitment equilibrium. In the weakly aligned preference case

described above, R is already getting their top choice and thus gets no benefit from being

able to commit. So, let us suppose that preferences are opposed. The best equilibrium

without commitment gives payoffs of 1
2

to both players. With commitment R will do much

better, but this will come mostly at the expense of DM.

R has the threat of the cyclic Latin square which limits DM to 1
N

and can start with

any option. Using this threat, R can induce any distribution of options that gives DM an

expected payoff of at least 1
N

. The best such distribution is as follows. With probability

1
N

, select DM’s top choice. With probability N−1
N

select R’s top choice. Play the row of the

cyclic Latin square that begins with the selected option. DM can do no better than to accept

the first option. As long as the 1
N

fraction of the time DM’s top choice is selected is done in

a way that contains the ρ1 fraction of the time the two players agree on a top choice, this is

the best distribution of options R can induce. The payoff to R is N−1
N

+ ρ1.

4 Feeling Lucky?

When you go go Google’s website and type your search query into the box, there are two

buttons you can click. One says “Google Search”, with will present an ordered list of search
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results similar to the model presented here. The other button you can click says “I’m Feeling

Lucky.” This but will take you directly to one of the search results rather than presenting

you with the list. Similarly Netfilx has a “Surprise Me” button you can click on start-up. It

will instantly start playing something rather than presenting options for you to pick from.

The beauty of these buttons is that they transfer all the great equilibria in the all-or-

nothing game into the general game. Consider the general game but at an additional stage

at the beginning. First R selects one option to be the “Lucky” option. Then, DM can

choose take the Lucky option (of which they have no information) or just play the regular

recommendation game.

4.1 Results

Consider the case of positively correlated preferences. It is an equilibrium for R to put their

most preferred option in the Lucky position and for DM to take the Lucky option. The

Lucky option gives a payoff of ρ1 while playing the regular game would only give a payoff of

v̄. As long as payoffs are positively correlated, DM prefers this Lucky option.

It’s the same idea as in the all-or-nothing game. In the all-or-nothing game R could

signal their own top choice by putting it first without messing up the equilibrium ordering.

The equilibrium ordering already has any option showing up first with some probability. In

the general game this isn’t possible. To get this good equilibrium payoff, R would need to

signal their own top choice somehow without giving away information. The Maximal Risk

Ordering does allow this. The MRO equilibrium works because it only presents the most

extreme options that don’t reveal any information about other options. If R put their own

top choice first and it isn’t one of the extreme options, DM can reject it then use what

they’ve observed to distinguish the high and low options in the next round. The Lucky spot

allows R to signal their top choice without giving away any additional information.

However, the Lucky spot is not of any use when the players have negatively aligned

preferences. If DM accepts the Lucky spot with any probability, R’s best response is to put
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their own top choice in that spot. R’s top choice gives DM a payoff of ρ1, which is worse

that randomly guessing. Thus, DM cannot ever accept the Lucky option.

4.2 Commitment

If R is able to commit ex ante to a strategy, then the Luck spot becomes valuable even

with negatively correlated preferences. R can commit to any distribution of options in the

Lucky spot that give DM at least v̄. The best of these distributions will give R a payoff at

least as large as w̄. w̄ is obtained by randomizing over each option equally which is one of

the allowable distributions here. As long as the preferences aren’t perfectly opposite of each

other, the best distribution is going to be strictly better.
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Appendix

Additional details of proofs are here.

Lemma 2:

Proof. First, see that for any strategy of DM, there is always an ordering where DM gets stuck

with their worst option. Suppose that in DM’s strategy, at some partial history DM accepts

an option that is the worst option they’ve seen so far. If this is the case, there is an ordering

where they get their worst overall option. Take an ordering that generated that history. If

that option they accept is already the worst overall, you’re done. Otherwise, swap the option

being accepted (worst so far) with the worst overall option (must be later in the sequence).

We now have another valid sequence. Furthermore, this sequence is indistinguishable from

the original (generates the same partial history). Thus, DM must accept the worst option

overall. Suppose now that DM’s strategy would never accept an option that is the worst

so far. Consider the ordering of options from best to worst. At every partial history, the

current option is always the worst one seen so far. DM cannot accept any of them. DM will

then get stuck with the last option which is the worst overall.

Next see that for any strategy, DM can always get stuck with the second (or ith) worst

option. This time split the possible strategies into three (i + 1) categories: DM accepts an

option that is the worst so far, DM accepts and option that is the second worst so far, or DM

never does either of those (DM accepts and option that is the jth worst so far with j ≤ i in

round N−j+1 or earlier). In any sequence where DM takes the second worst so far, you can

replace the worst and second worst so far with the worst and second worst overall. The new

sequence is indistinguishable and DM will choose the second worst overall. In any sequence

where DM accepts the worst so far, replace it with the second worst overall. If the second

worst overall has already been seen, replace its spot with the third worst overall. Continue

to replace options with the option one better until you get an option that hadn’t been seen

yet in the original sequence. The new sequence is indistinguishable and DM will choose the
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second worst overall. In the last case you have the options ordered from best to worst but

with the last two options switched (the order reversed on the last i options). Then DM will

be stuck with the last option, which is the second (ith) worst overall. The same process can

be applied for the ith worst option for any i.

As we can see, if R’s top choice is DM’s ith best option and DM is playing a pure strategy,

R can always find an ordering to guarantee it is chosen.

Theorem 1:

Proof. It is clear that R has no profitable deviation. Any strategy by R gets the same payoff.

Now we need to show there is no profitable deviation for DM if R is playing the maximal

risk ordering. If DM is indifferent between accepting and rejecting the current offer at

any history, then they have no profitable deviation to randomizing over those options with

probability 1
N−i+1

of accepting. We will show by induction.

Let there be only two options left and you have no information to differentiate them, but

know what two they are. That is, you know the value of the two remaining options, but you

can’t tell which is which. The current option is equally likely to be the better or worse of the

two. If you accept, you get the average of the two in expectation. If you reject, you get the

one that wasn’t first. This is still equally likely to be either one and has the same expected

value. So, when there are options left that you can’t differentiate and you know what values

they give, DM can do no better than the average of the two in expectation.

Now for the inductive hypothesis, suppose that when there are currently M indistin-

guishable options with known values, DM can do no better in expectation than the average

of those M . Let there be M + 1 indistinguishable options with known values remaining.

With probability q = ṽ−vmin

vmax−vmin
the current option has value vmax and with probability 1− q

it has a value of vmin. We can compute the expected value of accepting with a little algebra.

E[v] =
ṽ − vmin

vmax − vmin
vmax +

(
1− ṽ − vmin

vmax − vmin

)
vmin = ṽ
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In the next round, if the option is lower than this round’s, DM will know that this round

had vmax. If the next round’s option is higher, DM will know this round was vmin. So next

round, there will be M options remaining and they will have known values. Further more,

since this round’s option is either the top or bottom option and all current options are next

to each other in the overall ranking, all options next round will be next to each other in the

overall ranking. This makes them indistinguishable. By the inductive hypothesis, the best

DM can do after passing this round is get the average of the remaining M options. With

probability q these will be all the current options except vmax. With probability 1 − q it

will be all the current options except vmin. If the current option is vmax the average of the

remaining options will be
(
ṽ − vmax

M+1

)
M+1
M

. If the current option is vmin the average of the

remaining options will be
(
ṽ − vmin

M+1

)
M+1
M

. So, we now have the average value that can be

obtained by passing.

q

(
ṽ − vmax

M + 1

)
M + 1

M
+ (1− q)

(
ṽ − vmin

M + 1

)
M + 1

M
=
M + 1

M
ṽ − qvmax + (1− q)vmin

M

=
M + 1

M
ṽ − ṽ

M

= ṽ

This means that the best value obtainable from M + 1 indistinguishable options with known

values is the simple average of those values.
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