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Abstract

I present a game theoretic model of non-partisan gerrymandering between many

states electing members to the U.S. House of Representatives. States choose seat-

vote curves to affect policy through the makeup of Congress. A seat-vote curve is the

fractions of a state’s congressional seats won by a party as a function of that party’s

statewide vote share. In equilibrium, every state chooses a highly responsive seat-

vote curve (the slope in the middle is much steeper than one.) The responsiveness is

inversely proportional to the number of representatives that state gets to elect. I then

estimate seat-vote curves in each state and show that these two equilibrium facts are

true empirically. I show that there is a deadweight loss, and that universally switching

to proportional representation would benefit every state. However, this is a prisoner’s

dilemma situation where each state has an incentive to deviate to a highly responsive

seat-vote curve regardless of other states’ actions. I conclude by solving for the optimal

partisan gerrymandering of a state using information design techniques. I show that

the optimal policy always employs “cracking” and sometimes employs “packing.”

JEL Classification: D72, D02, P16, C72

1 Introduction

In 2020, all seats of the U.S. House of Representatives were up for re-election. The state of

Massachusetts elected nine of these representatives. The state was divided up into districts

and each district elected one representative by a majority vote of the population. Despite

25 percent of the state voting for Republicans, Democrats won all nine districts. Conversely,

Oklahoma and Utah elected five and four representatives respectively. Despite over 30 per-

cent of the population voting for Democrats in each of these states, all districts were won

by Republicans. If the districts had been drawn differently, the minority party in these

states could have won some of the congressional seats. Clearly, how the state is divided into
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districts will impact the fraction of congressional seats that are won by each party. In turn,

these districts affect policy.

Most study gerrymandering as a party choosing the districts to maximize the number

of districts they are able to win. I show that even a nonpartisan district designer has an

incentive to gerrymander when their state is not studied in isolation but in an equilibrium

with the rest of the states. Furthermore, the equilibrium nonpartisan gerrymandering will

predict those results in Massachusetts, Oklahoma, and Utah and match other empirical facts

documented in this paper.

To understand the model used and predictions made, a few terms must be explained the

way they are to be used in this paper. I will refer throughout this paper to the practice of

choosing how to divide a state into districts to achieve some aim as gerrymandering and the

person or group choosing the districts as the designer. Often the term gerrymandering has a

negative connotation and implies designing districts to help one party, but I will use it more

broadly to be designing districts for any objective of the designer. This objective may be

helping a political party or anything else.

The agents in the model don’t care directly about districts, but about policy. Since policy

is chosen by the elected representatives, the object of interest is what is called a seat-vote

curve. A state’s seat-vote curve is the fraction of seats won by a political party as a function

of the fraction of statewide votes received for that party. The slope of the seat-vote curve

in the middle (for vote shares between 45 and 55 percent) is known as the responsiveness.

Seat-vote curves become the objective of a district designer. This paper’s less catchy (though

likely more accurate) title could be “Equilibrium Seat-Vote Curves.”

The designer’s gerrymandering problem has two parts. The first part is choosing an

optimal seat-vote curve. Given any way the population votes, how many Democrats do

you want in Congress? This is simple if the designer is the agent of a political party. The

objective is just to make the seat-vote curve as high or low as possible. Assuming the designer

is non-partisan and values only the welfare of the citizens, the optimal seat-vote curve may

be more complicated. The second part of the problem is finding how to divide the state into

districts to implement the desired seat-vote curve. Even for a simple seat-vote curve, this

can be challenging.

There are many papers about designing districts to implement an objective seat-vote

curve but relatively fewer about finding the optimal seat-vote curve. Most papers studying

gerrymandering also focus on a district designer maximizing representation by a given party.

However, several states that have a bipartisan committee select the districts. Bipartisan

motivations have not been as well studied. I am not aware of any paper addressing the

problem of finding the optimal seat-vote curves for a non-partisan designer in an equilibrium
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setting. This problem is the focus of the current paper.

In the next section, I construct an equilibrium model of bipartisan district designers

from each state and derive the first main result. I show that in contrast to single state

models where the responsiveness of the optimal seat-vote curve is low (less than one) and

independent of state size, in an equilibrium model the responsiveness of seat-vote curves is

high (much larger than one) and inversely related to the state’s size. That is, smaller states

have more responsive seat-vote curves. There is a very simple intuition for these results and

why the presence of other states matters. Policy is chosen by the elected representatives. If

x percent of your state population is Democrat and 1−x is Republican, you typically want x

percent of the representatives to be Democrats and 1−x to be Republicans. Then, the policy

that maximizes the welfare of the representatives is the same as the policy that maximizes

the welfare of the state population. In a model with only one state, this proportional

representation is obtain by a seat-vote curve with a responsiveness of one. If one percent

more of the state is Democrat, one percent more of the representatives are Democrats. When

there are many states, a more extreme seat-vote curve is optimal. The intuition is the same,

but policy is chosen by the representatives from every state, not just your own. If one percent

more of the state is Democrat, you would like one percent more of the representatives in

Congress to be Democrats. One percent of the representatives in Congress is a lot more

than one percent of the representatives from your state (fifty times more on average). Thus,

the optimal seat-vote curve for your state has a very high responsiveness. This logic applies

even stronger for smaller states than for larger states. If a state wants Congress to be one

percent more Democrat, they need to elect about four more Democrats. For a state like

Iowa that’s all of their allotted representatives while for California it is about seven percent

of their allotted representatives. Thus, we see that smaller states have an incentive to choose

more highly responsive seat-vote curves in equilibrium than large states.

In section three, I empirically test these predictions. Using the Cooperative Congressional

Election Survey, I estimate the seat-vote curve in each state in the last two redistricting

cycles (redistricting is done every ten years). I find that the average responsiveness of

these seat-vote curves is significantly higher than one. I also find that the inverse of the

state’s size is highly predictive of seat-vote curve responsiveness. Smaller states have higher

responsiveness. I show that this relationship does not arise mechanically from the fact that

smaller states have fewer districts.

While in equilibrium each state chooses a highly responsive seat-vote curve, I show in

section four that this is not socially optimal. In fact, the gerrymandering problem is a

prisoner’s dilemma game. The socially optimal strategy is for each state to choose a seat-

vote curve with a low responsiveness. However, each state individually has a dominant
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strategy of choosing a high responsiveness. In equilibrium, every state is made worse off.

In section five, I show that a winner-take-all election in every state is approximately

optimal. In section six, I give extensions of the model. I first explain the difference if policy

is chosen by the median member of Congress rather than the mean member of Congress. A

winner-takes-all election then becomes optimal for every state. I next show the optimal ger-

rymandering strategy in this model for a state designer that wishes to maximize the number

of representatives from a particular political party. This can be solved for using information

design techniques. The optimal strategy always involves “cracking” and sometimes involves

“packing”.

1.1 Literature Review

The optimal partisan gerrymandering to maximize the number of seats for a particular party

has been well studied. A few papers in that literature include Owen and Grofman (1988),

Friedman and Holden (2008), Gul and Pesendorfer (2010), and Kolotilin and Wolitzky (2020).

There are relatively fewer papers that study the redistricting from a socially optimal or

nonpartisan angle. These include Gilligan and Matsusaka (2006), Coate and Knight (2007),

and Bracco (2013). Each of these papers study only a single state in isolation. My model

is an extension of Coate and Knight (2007). I simply extend their model of a single state

redistricting problem to one of 50 such states acting simultaneously.

In section 5, I show how a partisan designer would gerrymander in this model. The

techniques used to divide up the state into districts is akin to that of dividing a monopoly’s

market into segments (Bergmann et al. (2015)) or dividing a prior belief into possible poste-

riors (Aumann and Maschler (1995) and Kamenica and Gentzkow (2011)). In particular, ?

independently show how information design techniques can be used to solve gerrymandering

problems more generally.

Another paper that compliments mine well is Carson and Crespin (2004). The group

put in charge of drawing the congressional districts differs across states. They show that

in states where a bipartisan committee or a court is in charge of redistricting elections are

more competitive than when state legislature does the redistricting. My model is closer to

the motivation of a bipartisan committee or court. Since having more competitive elections

translates to a steeper seat-vote curve, this evidence is supportive of my model.
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2 Model

I will simply be using the model of Coate and Knight (2007) extended to have several states

competing in equilibrium. Section six will have extensions of this model. It is clear that the

qualitative results hold much more generally, but I don’t find any gain from presenting the

model more generally. The simple model makes the insights sufficiently clear.

2.1 Model Setup

Picture the policy chosen as a point lying in the interval from zero to one. Zero represents

the policy most preferred by the Democrat party and one is the policy most preferred by

the Republican party. Anything in between is a compromise. The policy is chosen by

the representatives in Congress elected by each state. State i ∈ {1, 2, . . . ,M} is given Ni

representatives to elect to Congress with ni = Ni∑M
i=1Ni

denoting the fraction of Congress

elected by state i. The state needs to choose how many of their Ni seats they give to

Democrats and how many they give to Republicans. I’ll assume that the seats are perfectly

divisible (electing .5 Democrats could be thought of as electing a moderate representative

that is halfway between the Democrat and Republican parties). The information the state

has to base this decision off of is the votes and the distribution of preferences among the

state population. That is to say, the state designer is choosing a seat-vote curve.

The point of different districting strategies is to induce a certain seat-vote curve. The

seat-vote curve is the expected fraction of congressional seats a party wins as a function of

the party’s vote share in the state. There is a fraction of the population that is certain to

vote Democrat, a fraction that is certain to vote Republican, and a fraction that could vote

either way. I will refer to the last group of voters as Independents. Consider a state in which

40 percent are Democrats, 40 percent are Republicans, and 20 percent are Independents.

You could have half of the districts be made up only of Democrats and Independents (4

Democrats for each Independent) and the other half of the districts be only Republicans and

Independents (4 Republicans for each Independent). Then regardless of what the indepen-

dents do, half seats will be won by Democrats and half won by Republicans. This means the

seat-vote curve will completely horizontal with a height of one half. This seat-vote curve has

a responsiveness of zero. Alternatively, you could make every district look demographically

like the state as a whole. That is, each district would be made up of 40 percent Democrats, 40

percent Republicans, and 20 percent Independents. Then, all the districts could potentially

be flipped based on what happens with the Independents. This seat-vote curve would have

a minimum of 0, a maximum of 1, and be very steep in the middle region. This is a highly

responsive seat-vote curve. The most intuitive idea people think of is that congressional
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seats should match the distribution of the voters. So, if Democrats get 54 percent of the

vote they should get 54 percent of the seats in congress. This is referred to as proportional

representation. This is represented by a seat-vote curve that is simply a 45 degree line. The

curve has a slope of one everywhere and an intercept of zero.
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Figure 1: Three different seat-vote curves implemented by gerrymandering. The solid line is
the “proportional” seat-vote curve. The dotted line is a less responsive seat-vote curve with
safe seats for both parties. The dashed line is a highly responsive seat-vote curve.

Each state has a unit mass of voters. Every voter has a private preference over the

policy chosen. In each state, there are three different groups of voters. There is a mass πDi

of Democrats with a preferred policy θ = 0. There is a mass πRi of Republicans with a

preferred policy θ = 1. There is a mass πIi of Independents with preferred policy distributed

over θ ∈ [0, 1]. Call mi the mean preference among the independent voters, and call 2τi the

width. The independent voters have a preferred policy uniformly distributed on the interval

[mi − τi,mi + τi]. This mean, mi, is unknown at the time the designer chooses a seat-vote

curve. The unknown mean is what makes a seat-vote curve necessary in the first place. If the

designer fully knew the distribution of preferences in the state, they could simply compute

the welfare maximizing policy and and choose the corresponding fraction of congressional

seats for Democrats. With an unknown mean, the optimal fraction of seats to give to

each party is also known. When mi is high (low), more of your state likes the Republican

(Democrat) policy and you would like to give more seats to Republicans (Democrats). At the

time of the election the mean is drawn from a uniform distribution mi ∼ U
([

1
2
− τi, 12 + τi

])
.

This means that the fraction of independents that will vote Democrat in a given election is
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uniformly distributed over [0, 1].

Each voter wants the policy to be as close as possible to their preferred policy. They face

a quadratic loss function. If a voter’s preferred policy is θ̂ and the policy chosen is θ, the

voter receives a payoff of −
(
θ − θ̂

)2
. The voters are not strategic in their choice. A voter

will vote Democrat if their preferred policy is less than or equal to 1
2
. Otherwise, they will

vote Republican. A slightly Democrat leaning voter may still want to vote Republican if

they think the rest of the state leans even more Democrat and they want to balance it out.

However, with a continuum of voters, an individual vote doesn’t affect the outcome and thus

such strategic motivations don’t arise. The voters are therefore kept simple.

The strategic players of the game are each state’s district designer. They each choose

a seat-vote curve. Call vi the fraction of voters that vote Democrat in state i. This is a

combination of how many Democrats, Republicans, and Independents are in the state, as

well as where the median Independent voter is.

vi = πDi + πIi

( 1
2
− (mi − τi)

2τi

)
(1)

The seat-vote curve S : [0, 1]→ [0, 1] is a mapping from the fraction of votes that Democrats

won, vi, to the fraction of representatives Democrats get in congress, Si(vi).

After the election, the policy is chosen collectively by the representatives from all 50

states. Recall that ni is the fraction of representatives that come from state i. If each

state, i, elected Si(vi) Democrats, then congress will have a fraction S =
∑M

i=1 niSi(vi). The

members of congress choose the policy that maximizes their welfare. Policy is set equal to

the average of all the representatives preferences. So, the chosen policy, θ is equal to 1− S
(because a Democrat’s preferred policy is 0).

This is a simultaneous move game where each state chooses a seat-vote curve, Si(vi) ∈
[0, 1] ∀vi ∈ [0, 1], to maximize the welfare of its voters,

max
Si(vi)

− Em1,m2,...,mM

[
πDi (θ)

2 + πRi (1− θ)2 + πIi

∫ mi+τi

mi−τi
(θ − x)2

dx

2τ

]
(2)

where θ, the policy, is equal to one minus the average fraction of seats chosen by the states

for Democrats.

θ = 1−
M∑
i=1

niSi(vi) (3)

This game has a unique Nash equilibrium.
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2.2 Single State

Before solving explicitly for the solution of this game, let us briefly examine the desired

policy of a state. This can be found by looking at the special case where M = 1. The case

of only a single state is what the literature has studied previously. Call G the distribution

of voters’ individual preferences in the state. Since there is only one state, the policy chosen

is completely determined by the fraction of Democrats the state chooses to elect. Thus, the

problem can be written simply.

max
θ̂
−
∫ (

θ̃ − θ
)2
dG(θ̃) (4)

This problem has a simple solution. The state would like the policy to be equal to the

average preference in the state.

⇒ θ∗ = EG [θ] (5)

Equation (5) contains much of out intuition about seat-vote curves to this point. Plugging

in the model assumptions about the distribution G, this equation gives us the optimal seat-

vote curve derived by Coate and Knight (2007).

θ∗ = Em [θ] (6)

=
1

2
+ (πD − πR)

(
1

2
− τ
)

+ 2τ

(
v − 1

2

)
(7)

This equation also shows the motivation supporting the proportional seat-vote curve. If

every voter was either a pure Democrat or pure Republican living on the extreme, πI = 0,

then the average preference is exactly equal to the vote share. This can be seen from equation

(6) using the facts that πR = 1 − πD − πI that πI = 0 implies v = πD. Since there are no

independents, the fraction of votes for Democrats is just the fraction of Democrats in the

voting population.

θ∗ =
1

2
+ (πD − πR)

(
1

2
− τ
)

+ 2τ

(
v − 1

2

)
(8)

=
1

2
+ (2πD − 1)

(
1

2
− τ
)

+ 2τ

(
πD −

1

2

)
(9)

= πD (10)

When the state is one percent more Democrat, you want policy to be one percent more

Democrat. Thus, you elect one percent more Democrats. Essentially the same result (θ∗ = v

which is proportional representation) obtains when τ = 1
2
. However, when πI > 0 and τ < 1

2
,
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you do not get proportional representation. A one percent increase in the population voting

Democrat is not from one percent of the population that were staunch Republicans and are

now suddenly staunch Democrats. The one percent increase in votes comes from one percent

of the population that was near the center but leaning slightly Republican and is now near

the center and leaning slightly Democrat. It is a much smaller shift in aggregate preference.

Thus, optimal policy would shift toward the Democrats by less than one percent. This is

the motivation for a flatter seat-vote curve. This logic implies that optimal seat-vote curves

should have a low responsiveness, a fact not verified in the data.

2.3 Many States

Taking the single state case as a baseline for comparison, return now to the case of many

states, such as M = 50. Even though the shift in desired policy is mild (slope of 2τi in the

above equation), the strategy a state must take to implement that shift is extreme. We can

see this by solving for state i’s best response function in the game. Once the state sees the

vote share, vi, they no longer face any uncertainty about their own voters’ preferences. This

means that the optimal seat-vote curve can be solved for point-wise. The setup is nearly the

same as the single state case.

max
Si(vi)

−Ev−i
[∫ (

θ̃ − θ
)2
dGi(θ̃)

∣∣∣∣ vi] (11)

s.t. θ = 1−
M∑
j=1

njSj(vj) (12)

We can plug in for Gi and θ to get the whole messy objective.

max
Si(vi)

−Ev−i

πDi(1−
M∑
j=1

njSj(vj)

)2

+ πRi

(
M∑
j=1

njSj(vj)

)2

+ πIi

∫ mi+τi

mi−τi

(
1−

M∑
j=1

njSj(vj)− x

)2

dx

2τi

∣∣∣∣∣∣ vi
 (13)

Now to find the maximum, we differentiate and simplify considerably.

∂Wi(vi)

∂Si(vi)
= 2niE

[
πDi

(
1−

M∑
j=1

njSj(vj)

)
(14)
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−πRi
M∑
j=1

njSj(vj) + πIi

(
1−

M∑
j=1

njSj(vj)

)
− πIi

∫ mi+τi

mi−τi

x

2τi
dx

∣∣∣∣∣ vi
]

(15)

= 2ni

(
πDi + πIi(1−mi)−

M∑
j=1

njEvj [Sj(vj)|vi]

)
. (16)

Setting this equation equal to zero gives us the welfare maximizing share of seats for

Democrats given the realization of the Independent voters.

Ŝi(vi) =
1

ni
(πDi + πIi(1−mi))−

∑
j 6=i

nj
ni

Evj [Sj(vj)|vi]. (17)

Here the seats are a function of mi. Of course, we would like the seats to be a function

explicitly of vi to get our seat-vote curve. You can write mi as a function of the vote share

simply by inverting equation (1).

mi =
1

2
+ τi

(
πIi + 2πDi − 2vi

πIi

)
(18)

Plugging this in, you can get the seats as a function of the vote share, call it Ŝi(vi).

Ŝi(vi) =
1

ni

(
1

2
+ (πDi − πRi)

(
1

2
− τi

)
+ 2τi

(
vi −

1

2

)
−
∑
j 6=i

njEvj [Sj(vj)|vi]

)
. (19)

Ŝi(vi) would be the best response for state i if they were not constrained to choose seat

shares between 0 and 1. This equation, however, will frequently lie outside the interval [0, 1].

Since the objective is quadratic, the solution for the best response function will still be very

simple. With a quadratic objective, the optimum will just be at the boundary closer to the

unconstrained optimum.

Proposition 1. The equilibrium seat-vote curve for state i is

S∗i (vi) =


0 if Ŝi(vi) < 0

Ŝi(vi) if Ŝi(vi) ∈ [0, 1]

1 if Ŝi(vi) > 0.

(20)

The shape of a typical equilibrium seat-vote curve can be seen in figure (2). In contrast to

the single state setup, seat-vote curves are S-shaped in equilibrium with high responsiveness.

This can be seen from equation (19). Assume that mi is drawn independently from mj for
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Figure 2: The optimal seat-vote curve.

every state j. You can see already that the seat-vote curve for state i is very steep in the

middle.
∂S∗i
∂vi

=
2τi
ni

(21)

The first component, 2τi < 1, comes from the fact that a change in vote share represents

a smaller change in average political preference in the state and the seat-vote curve should

be less responsive. The second component, 1
ni

, comes from the fact that state i is only a

small part of the national congress and to get congress to shift by 1 percent the state needs

to shift their representatives by an average of 50 percent. This is the key difference in the

equilibrium model. States have highly responsive seat-vote curves because they know they

are small and need a dramatic action the make any sizable impact on a national scale. The

same insight is frequently heard when discussing the U.S. electoral college. Nearly every

state chooses to allocate their electoral college votes according to a winner-take-all vote.

Notice that the incentive to act dramatically (have a highly responsive seat-vote curve) is

greater for small states than for large states. California can make a large impact on Congress

flipping only a fifth of their representatives, while Minnesota needs to flip all of them to have

a similar impact. The responsiveness of the equilibrium seat-vote curve is thus inversely

proportional to the size of the state (measured in terms of the number of representatives

allocated to the state).

Another difference from the single state model comes from and additional term in equa-
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tion (19).

−
∑
j 6=i

njEvj [Sj(vj)] (22)

This term is the only way that states directly respond to the the action of other states. You

want to adjust how many Democrats you elect to account for what you think all the other

states are going to do. If you think the other states are going to elect a lot of Democrats,

you elect fewer. If you think the other states will elect a lot of Republicans, you elect

more Democrats. Even a state that leans Democrat could find it optimal to elect more

Republicans than Democrats if they believe the rest of the country leans significantly more

Democrat than they do. Notice that this incentive does not impact the responsiveness of

the equilibrium seat-vote curve. This only shifts the level of the curve, not the slope.

Proposition 1 describes only the best response function of each state. In the appendix I

solve this system to equations to show existence and completeness of an equilibrium. That

analysis isn’t important for the main results though because we see that the slope of a state’s

seat-vote curve is independent of the other states’ actions. Thus, we already know everything

about equilibrium responsiveness.

What would this equilibrium gerrymandering look like in practice? For a moderate

state, this would look like making as many districts as possible able to flip back and forth

between Democrat and Republican easily. The high responsiveness comes from a large

number of districts that can easily flip. This property is one that is frequently sought after

by nonpartisan district designers, though not in those words. For example, in Arizona a

nonpartisan committee draws the districts and in their mandate is the edict to make as many

“competitive” districts as possible. Arizona is far from unique. “Competitive” districts are

typically seen as a good goal. Having a large number of competitive districts is the same as

having a high responsiveness.

For a state that is more extreme politically implementing the equilibrium seat-vote curve

looks a little bit different in practice. The state still wants a very high responsiveness in the

middle (around vote shares between 45 and 55 percent), but those vote shares are unlikely

to happen. For vote shares that are much higher (lower) than that the state would like to

elect as many Democrats (Republicans) as possible. A state that is highly supportive of one

political party, will usually have that party controlling their state congress (the most frequent

district designer). The party faces a great deal of criticism for gerrymandering to maximize

their party’s seats, but in equilibrium a nonpartisan designer should be doing exactly the

same thing.

In practice, implementing the equilibrium seat-vote curves of a nonpartisan designer looks

like trying to maximize the seats for one party when that party is dominant in the state and
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trying to make as many districts “competitive” as possible in more moderate states. These

behaviors are the ones typically observed. The observed behaviors that run counter to what

a nonpartisan designer would want are trying to impact the bias (level of the curve, not

slope) by winning as many districts as possible for a party in a moderate state. Also, the

concept of “safe seats” for each party is counter the nonpartisan equilibrium.

3 Empirical Results

I would now like to empirically confirm the existence of the main insights from the theoretical

model, namely that seat-vote curves are highly responsive and that this responsiveness is

inversely proportional to the state’s size.

3.1 Methodology

First I do a simple estimation of the seat-vote curve in each state. I use data from the

Cooperative Congressional Election Study from 2006 to 2019. This gives me survey data from

two different redistricting cycles. From this I aggregate across each of the 435 congressional

districts what fraction self report as Democrat, Republican, or Independent/Not Sure. The

goal is to estimate seat-vote curves by simulating many election results. As in the model, I

suppose that the self reported Democrats will vote for the Democrat candidate, the reported

Republicans will vote for the Republican candidate, and that the Independents and Not Sure

respondents could vote either way.

We want to estimate the share of seats Democrats would win across all possible vote

shares. To do this, I randomly draw the fraction of Independents to vote Democrat in

each district 10,000 times. In each draw, you can compute how many districts in the state

Democrats won and what fraction of the overall vote in the state Democrats won. This gives

10,000 simulated elections. The smoothed version of these points is the estimated seat-vote

curve. I take the average fraction of state’s seats earned for each level (1 percent window)

of the state vote share.

Figure 3 shows the estimated seat-vote curves for two states. Call the responsiveness of

a seat-vote curve the average slope of the curve on the interval [.45, .55]. Over the middle

ranges of votes shares, this is how much the congressional seats respond to changes in the

vote on average.

The intuitive proportional seat-vote curve would be a linear function with a slope of one.

From the graph, the seat-vote curve in Colorado is nearly linear, but with a slope closer to

three for intermediate values of the vote share. Connecticut’s seat-vote curve has more of
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Figure 3: The estimated seat-vote curves for Colorado and Connecticut. Connecticut’s curve
is much steeper in the middle than Colorado’s. Connecticut has the more responsive curve.

a slanted ”S” shape. The is a very high slope in the intermediate values of the vote share.

Between vote shares of 45 percent and 55 percent the slope averages about 6.5 or a little

more than twice as steep as Colorado’s.

3.2 Results

Now we want to find the correlation between the responsiveness of a state’s seat-vote curve

and the inverse of the state’s size. I use the average slope of the estimated seat-vote curve

between vote shares of 45 and 55 percent as the measure of responsiveness. The relevant

size of the state is just the number of representatives allocated to that state. Figure 4

shows a scatter plot of responsiveness versus size. The main theoretical results we wanted

to verify jump out immediately. First note the high responsiveness. Every state has a

responsiveness well above one. Next see the negative correlation between responsiveness and

size. Furthermore, the non-linear relationship appears to be well approximated by the solid

line which is one over the state’s size (and constants).

A simple regression can be run to confirm the significance of the apparent relationship.

The dependent variable is the responsiveness of each state. I estimate

y = β0 + β1
1

Ni

+ β2Xi + εi (23)

where Ni is the number of representatives allocated to the state and Xi are controls for year,

political party in power, method of choosing districts, and the fraction of independents in

the state. The smallest seven states were only allocated one representative each. Those

states don’t have a districting decision and were omitted from the regression.

There is always a large significant relationship between the responsiveness and the number
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Figure 4: A scatter plot of seat-vote curve responsiveness verses the number of representatives
allocated to a state (size).

of representatives. Smaller states have much steeper seat-vote curves. This relationship

persist and is unaffected by which party is in control or how much control a party has in a

state. In fact, but coefficients are larger when the controls are included.

We can also see that the non-linearity of the relationship is picked up well by an inverse

proportionality to the size of the state. This is the same equation we derived from the

theoretical model.
∂Seats

∂votes
≈ a+ b

1

ni
+ εi (24)

where Ni is the number of representatives (size) of state i.

3.3 Simulation

While it’s clear that responsiveness is well predicted by the inverse of a state’s size, is this a

strategic choice from the states or just something that arises automatically from the way the

system is set up? Consider the states that have one one representative for a moment (even

though they were omitted from the regression). Their seat-vote curve is just a winner-take-

all function. If the Democrats get 45 percent of the vote, they win 0 percent of the seats. If

they get 55 percent of the vote, they win 100 percent of the seats. Thus, increasing the vote

share from .45 to .55 increases the seat share from 0 to 1. This makes the responsiveness of

these states equal to 10 which is higher than any other state. The smallest states (those with
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Variables (1) (2) (3) (4)
N -.0577*** -.2005***

(.012) (.032)

N2 .0031***
(.001)

1
N

4.8010*** 6.1199***
(.714) (.819)

Constant 5.9964*** 7.3417*** 3.6451*** 6.0947***
(1.040) (.962) (.169) (.874)

Controls Yes Yes No Yes

Observations 86 86 86 86
R-squared .260 .428 .350 .442

Table 1: Regression output showing the relationship between the responsiveness of a state’s
seat-vote curve and its size.

only 1 district) have the highest responsiveness (10), but this wasn’t due to any strategic

choice. This just happened automatically. Is the entire trend automatic in this same way?

Will states with fewer representatives have higher responsiveness automatically or is this a

quirk specific to states with only one representative?

I run simulations of randomly assigned districts to find if the trend arises automatically,

and I am able to reject the hypothesis that the trend in the data is driven by circumstance.

For every state size (from 2 to 53 districts), I randomly assigned the fraction Democrats,

Republicans, and Independents in each district. With the randomly assigned districts, I

estimated the seat-vote curve and responsiveness by simulating a large number of elections

as in the previous section. I did this 100 times for each possible state size. Finally, I regress

the responsiveness on the inverse of the number of districts in the randomly simulated data.

Variables Coeff. Std. err.
1
N

2.2930 0.160

Constant 1.4008 0.016

Observations 2686

R-squared .071

Table 2: Regression output showing the relationship between the responsiveness of a state’s
seat-vote curve and its size in randomly generated districts.

You can see from the regression output that some effect does arise from the setup of the

districting problem. The average responsiveness in the randomly assigned districts is greater
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than 1, the coefficient on the inverse of the number of districts is greater than 0 (2.2930), and

these values are both statistically significant. However, we also see that both coefficients are

significantly smaller than in the actual data where they were 3.6451 and 4.8010. Since those

coefficients had a standard error of .714 and .169 respectively, we can clearly reject the null

hypothesis that the high average and the relationship between responsiveness and state size

are generated by the setup of the problem. Additionally, The R-squared in the regression

with simulated data is only .071, compared with .350 in the regression with the real data

without controls. To further illustrate the point, I’ve included a plot where you can see that

the same trends exist in the simulated data but at a much smaller order of magnitude.

Figure 5: The lighter dots (orange) are from the simulated data. The darker dots (blue) are
from the actual data. Each also has a regression line.

4 Welfare

Even though the described strategies constitute the only equilibrium, they don’t give the

highest total payoffs in the game. They aren’t socially optimal. Let us construct the socially

optimal policy if a planner was in charge of all 50 states. The objective function would look
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similar, but it would account for the citizens in every state.

max
θ

−
M∑
i=1

niEv
[
πDi (θ)

2 + πRi (1− θ)2 + πIi

∫ mi+τi

mi−τi
(θ − x)2

dx

2τi

]
(25)

Differentiate this with respect to S to solve for the optimum.

∂W

∂θ
= 2

M∑
i=1

niπDi(θ)− 2
M∑
i=1

niπRi(1− θ)− 2
M∑
i=1

niπIi

∫ mi+τi

mi−τi
(θ − x)

dx

2τi
(26)

Evaluating the uniform integral and simplifying,

= 2
M∑
i=1

niπDi + 2
M∑
i=1

niπIi(1− E[mi])− 2(1− θ) (27)

since
∑M

i=1 ni = 1.

Putting the planner on the same footing as the states in the game, let them choose an

entire seat-vote curve for the nation. This makes the expectation go away. Now, substitute

in for mi as before to get an expression in terms of vote shares, vi. Setting this equal to zero

gives the optimal policy.

1− θ∗ =
M∑
i=1

ni (πDi + πIi(1−mi)) (28)

=
M∑
i=1

ni

(
πDi + πIi

(
1

2
− τi

πIi + 2πDi − 2vi
πIi

))
(29)

=
M∑
i=1

ni

((
1

2
− τi

)
πIi + (1− 2τi) πDi + 2τivi

)
(30)

=
1

2
+

M∑
i=1

ni

(
(πDi − πRi)

(
1

2
− τi

)
+ 2τi

(
vi −

1

2

))
(31)

Assuming τi is the same in each state, this would be a linear function of the aggregate

vote share with a slope equal to 2τ . It’s also easy to implement. Since it’s linear, we would

get this policy by each state having a seat-vote curve equal to

Si(vi) =
1

2
+ (πDi − πRi)

(
1

2
− τ
)

+ 2τ

(
vi −

1

2

)
. (32)

with that same low slope of 2τ . Notice that this is the same as equation (6), which is the
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Figure 6: The loss each state faces in equilibrium from their expected utility in the social
optimum.

same as in Coate and Knight (2007). This is where each state simply chooses their most

preferred policy. If a state wants the policy to be 60 percent Democrat, then they just elect

60 percent Democrats.

Take the following example. Imagine that everyone in the room was to write down what

temperature they would like room. Then the thermostat is set to the average of all the

votes. The social optimum is obtained if everyone just honestly writes their most preferred

temperature. However, you may have an incentive to write something different. If you like

to the room to be 67◦F and you think that’s a little colder than most people like, you have

an incentive write a vote that is much colder. You want the average of the votes to be 67.

So, you might write something more extreme like 60 degrees. You need an extreme vote to

pull the average down to where you want it.

In equilibrium, political districting is the same way. This mild seat-vote curve is what

will maximize national welfare, but each state has an incentive to deviate. When a state

gets a lot of votes for Democrats, they think their state is likely more Democrat than the

average state. Then to make the policy a little more Democrat the state wants to elect a lot

more Democrats. Regardless of what the other states are doing, each state has an incentive

to deviate by playing a highly responsive seat-vote curve.

This is a prisoner’s dilemma situation though, because in equilibrium every state is worse

off. No state prefers the equilibrium to the collusive outcome where all states choose modest

seat-vote curves.

The smallest states have the largest incentive to deviate. We saw in equation (19) that

the smaller the state, the steeper they would like their seat-vote curve. In the limit, as a
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state grows in size its best response would approach the socially optimal curve. The state

would play the social optimum if their own elected congress members could move policy one

for one. States only play the more extreme curves because the congress members they elect

are only a small part of making the policy. This becomes a larger and larger factor as a state

shrinks in size.

5 Winner-Take-All

It may be that the optimal seat-vote curve in the model is difficult to implement in the world,

requires a lot of information, or that the model assumptions don’t line up exactly with your

view of the world. There is a very simple seat-vote curve that can always be implemented,

relies on no model assumptions, requires no information, and is very close to the optimal

value. It is a winner-take-all election.

Take a seat-vote curve equal to

Si(vi) =

0 if vi < .5

1 if vi ≥ .5
(33)

That is, if the Democrats get more than 50 percent of the vote in the state, all of the state’s

representatives will be Democrats. Otherwise, all the representatives will be Republicans.

This doesn’t require any knowledge about the voting population in the state. It is also

extremely simple and easy to understand. It could be done without creating any districts.

If districts are desired, all the state needs to do is randomly assign each citizen a district

number regardless of geography. Each district in the United States is composed of about

700,000 people. By the law of large numbers, each district would then have pretty close to the

same fraction voting Democrat in each election. This would implement the winner-take-all

seat-vote curve.

While winner-take-all is not the best response, it is very close to the best response. Every

state’s seat-vote curve is flat at zero, then increases rapidly to one, then is flat at one. For the

true best response the increase isn’t infinitely steep like a winner-take-all, but the average

slope is about 50. The graph shows these two curves for Minnesota.

In fact, nearly all the gains from deviating to the best response from the previous section

can be obtained from deviating to a winner-take-all function.

In fact the strategies are almost always the same. In the best response, the fraction of

Democrats elected is either 0 or 1 more than 80 percent of the time in each state already.
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Figure 7: This is a graph of several seat-vote curves for the state of Minnesota. The “propor-
tional” curve is a linear seat-vote curve with a slope of one. The “CK” curve is the socially
optimal seat-vote curve. “Equilibrium” is the curve Minnesota would choose as their best re-
sponse in equilibrium play. “Winner-take-all” is simply an indicator function for vote shares
above 50 percent.

6 Extensions

Here I go through a few major extensions of the model. The extensions aren’t to show

robustness of the main results. Rather, these are changes to the model that are frequently

asked for and I believe contain important insights in their own right.

6.1 Median Congress Member

One assumption of the model up to this point has been that the policy chosen is equal to

the mean preference of all the elected congress members. One might not believe that all the

members of congress are so readily willing to compromise. Perhaps, the majority party can

disproportionately pull policy in their favor. In this section, I consider the opposite extreme

from the rest of the paper. Suppose that the policy chosen is equal to that of the median

member of congress. This would be if the majority party has complete control over choosing

policy and doesn’t need to compromise to please the minority. The optimal seat-vote curves

will be even simpler than before but not that different intuitively.

Now, there are only two real outcomes of the game. Either the Democrats win the

majority or the Republicans win the majority. State i first needs to determine which of
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Figure 8: The gain from deviating from the social optimal to winner-take-all as a percentage
of the gain from deviating to the best response.

those it prefers. State i will prefer Democrats win the majority as long as

πRi + πIi

∫ mi+τi

mi−τi
x
dx

2τi
≥ πDi + πIi

∫ mi+τi

mi−τi
(1− x)2

dx

2τi
. (34)

Computing the integral and simplifying yields a simple equation. The state will prefer a

Democrat majority as long as

vi ≤
1

2
+ (πRi − πDi)

(
1

4τi
− 1

2

)
. (35)

The unique best response is for the state to give all its representatives to the Democratic

Party when the vote share is above that cutoff and give all representatives to the Republican

Party when it is below the cutoff. This is the case regardless of what any other state is doing.

The optimal seat-vote curve for every state is a winner-take-all election. The difference from

a standard winner-take-all though is that the cutoff for the Democrats to win my not be

at exactly 50 percent. This is because not every vote is created equal. A firm member

of the Democrat party counts for more than an independent voter that is leaning slightly

Republican. Thus, the cutoff will be at a point that favors the party that has a larger

political base in the state.

In this game, the socially optimal policy is not unique. Any congress with a Democratic

majority is the same regardless of how strong that majority after all. The socially optimal

national seat-vote curve will be any curve that is above one half if inequality 35 is satisfied

and is below one half if inequality 35 is not satisfied. This could be a winner take all election
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Figure 9: The fraction of the time the best response and a simple winner-take-all choose the
same number of Democrats.

with that cutoff point. This could also be the socially optimal seat-vote curve from the

previous section when policy was decided by the mean congress member. This can still be

implemented by every state playing the moderate “CK” seat-vote curve as before. However,

every state doing a winner take all election does not implement a socially optimal national

seat-vote curve.

Note that the equilibrium strategy for each state no longer depends on the size of the

state. The winner-take-all election would look the same for Wyoming and Texas or for

Rhode Island and California. Even if a state had complete control over the policy chosen,

they would still find it optimal to choose this same seat-vote curve. That is to say, this curve

is a dominant strategy for all states regardless of size and regardless of what every other

state might be doing.

In truth, policy is not controlled entirely by the median congress member or by the mean

congress member. It is likely something in between those two. In this model I found the

optimal seat-vote curve for each state to be similar for each of the two extremes, and thus

expect it to be similar for any intermediate policy selection method.

6.2 Partisan Gerrymandering

In many states the party in control of state congress can draw the districts. In this section

I will study what a designer would do if they wanted to maximize the expected number of

seats that a given party will win. This isn’t really an equilibrium problem. What districts

other states draw, and who they elect doesn’t enter into the objective in any way. We can

simply solve a state’s districting problem in isolation.
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6.2.1 Example

Consider a state that has 50 percent Democrats, 25 percent Republicans, and 25 percent

Independents. The intuitive outcome is that the Democrats should get 50 to 75 percent of

the seats in congress and the Republicans should get 25 to 50 percent of the seats, depending

on how the Independents vote. If the districts are drawn to maximize the expected number

of seats for either party, the outcome will look very different. First, if the Democrats are in

charge of drawing the districts, they can win all the seats in this model. All they need to

do is make every district look just like the state as a whole. Each district will be 50 percent

Democrat, 25 percent Republican, and 25 percent Independent. It doesn’t even seem like

an extreme gerrymander on the face of it. They simply make every district identical and

representative of the state. However, since the Democrats are now guaranteed to have at

least 50 percent of the vote in every district, they will win all the congressional seats.

What if the Republicans are in charge of drawing the districts. They can use a concept

called “packing” to win some of the seats. “Packing” is when you group together supporters

of the opposition into a single district. If you’re going to lose a district, you might as

well lose big. They can simply putting all the Democrats together in the first half of the

districts. Then in the other half of the districts they can employ a strategy called “cracking”.

“Cracking” is when you split up your own party’s supporters so you can win more districts.

If you’re already going to win a district, each additional vote you get in that district is

wasted. In the second half of the districts they can make each district an equal mix of

Republicans and Independents. Since they have guaranteed at least half the votes in each

of these districts, they will win them all. This districting strategy is simple and it gets the

Republicans half the seats.

However, the Republicans can do even better than this. It might seem like since half

the state is certainly going to vote Democrat, Republicans can never win more than half

the seats, but they can. For simplicity, assume that ties are broken in the Republican’s

favor. Throughout the section, I will always assume that ties are broken in favor of the

party drawing the districts. Otherwise they would simply need to put one additional voter

from their party in each of this districts to insure a win.

Consider the following districting. In one quarter of the districts they follow a packing

strategy. One quarter of the districts are made up entirely of Democrats. Then in half of the

districts they use a cracking strategy. They do it a little differently than before. If you’re

going to win a district for sure, you might as well make sure the rest of the votes are against

you. You don’t want to waste any votes. So, in this half of the districts there will be an

equal mix of Republicans and Democrats. The Republicans will win all of these districts.

Finally, the remaining quarter of the districts are made up entirely of Independents. On
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Figure 10: The distribution of voters in the state.

average Republicans will win half of these districts.

This plan gives the Republicans five-eighths of the seats in congress on average. This is

the optimal districting plan in this example. If a state used to be heavily Republican, they

may have a majority of Republicans in their state congress. This districting shows how they

can maintain their majority in congress even if the population in the state changes to be

heavily Democrat.

6.2.2 Optimal Districting

Generally, I will show that the optimal districting for maximizing the expected number of

seats for a given party will have the same form as the example.

There are three types of voters. The distributions of these voters can be represented by

a simplex as in figure 10. This problem is very similar to a Bayesian Persuasion problem.

In Bayesian persuasion, the sender is looking at ways to split a up distribution (the prior

beliefs) into multiple other distributions (posterior beliefs) that must average out to the first

distribution (by Bayes Rule). In this gerrymandering problem, the districter is looking at

ways to split up a distribution (the population of voters in the state) into multiple other

distributions (district populations) that add up to the state population. Just like in Bayesian

Persuasion, the optimal value can be thought of as a “concavification” on this simplex.

Suppose the districter wants to maximize the expected number of seats for the Republican
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party. The distributions in figure 10 can be broken up into a few segments. The lower left

triangle in the figure (red) are distributions where the Republicans have at least 50 percent

of the population. They would win these districts with certainty. The upper triangle (blue)

are distributions where Democrats have at least 50 percent of the population. They would

lose these districts with certainty. The rhombus of remaining distributions (purple) are

distributions where either party could win depending on how the Independents vote. The

distributions along the dashed line are equally likely to be won by Republicans or Democrats.

The likelihood of Republicans winning transitions from one to zero as you move up and to

the right through this region.

To think about concavification, picture this triangle as a 3D object with the colors rep-

resenting height. The lower left triangle (red) has a height of one. The upper triangle (blue)

has a height of zero. The rhombus (purple) linearly connects the two triangles. Now imagine

taking a cloth, laying it on top of the object, and pulling the edges down tight. This is the

concavification of the function. The height of this concavification is the maximum expected

number of seats Republicans can win with the optimal districting. The points where the con-

cavification is equal to the original function (where the cloth is touching the 3D object) are

the distributions that are used in the optimal districting schemes. If the state’s population

is on one of those points, it is optimal to make every district have a distribution identical to

the state as a whole. If the state’s population is not one of those points, the optimal districts

with break up the state into different districts that are all among those points.

Let U ⊂ ∆2 be the subset of distributions containing all distributions with πR ≥ 1
2

and

the other two extreme points, πD = 1 and πI = 1. A district is dominated if it can be

segmented into two or more districts to get a strictly higher payoff.

Lemma 1. A district is undominated if and only if its distribution of voters is in U .

First see that each of these points in U is undominted. If you are at one of the corners, all

voters are the same, so there is no way to split the voters into different districts. If πR ≥ 1
2

then your party will already win with certainty and you get the maximal payoff of one.

Now see that every other distribution is dominated by some splitting. First, distributions

where πD ≥ 1
2

(upper blue triangle) would get a payoff of zero. Any splitting with a strictly

positive payoff will dominate. For example placing all the Democrats in their own districts

and all the Independents and Republicans in another district. There is a positive probability

of winning the districts without any Democrats.

Next consider the distributions with πR < 1
2

and πD < 1
2

(the purple rhombus). The

probability that the Republicans will win a district with a distribution of voters in this area
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is

Pr{winning} =
1
2
− πD

1− πD − πR
. (36)

Along horizontal lines, this is a convex function. In other words, holding fixed πD, Pr{winning}
is a convex function of πR. Since these horizontal bars are convex, splitting to the endpoints

(distributions with πR = 1
2

and distributions with πR = 0) will give a strictly higher payoff.

The only distributions left to check are the boundary where πR = 0 and πD ≤ 1
2
.

Pr{winning} =
1
2
− πD

1− πD
(37)

≤
1
2
− πD + 1

2
π2
D

1− πD
(38)

=
1

2

(1− πD)2

1− πD
(39)

=
1− πD

2
(40)

Note that 1−πD
2

is the payoff from splitting the Democrats and Independents into their own

separate districts. Thus, distributions on this boundary are dominated by splitting into

distributions where πD = 1 and πI = 1.

The optimal strategy requires splitting your state population up into only undominated

districts. If your state population is in U , you simply make every district identical. If your

state population is in the purple rhombus below the dashed line (more Republicans than

Democrats), the optimal splitting is a combination of the bottom right corner (100 percent

Independents) and the point on the edge of the lower left triangle (50 percent Republicans)

that is straight across the prior from the corner. Republicans will win all of the latter districts

and have a 50 percent chance of wining the former districts. If your state population is

anywhere above the dashed line (more Democrats than Republicans) the optimal splitting

is a combination of the point where the lower triangle meets the upper triangle (50 percent

Republican and 50 percent Democrat), the bottom right corner (100 percent Independent),

and the top corner (100 percent Democrat). Republicans will win all of the first type of

districts, have a 50 percent chance in the second type of districts, an lose all of the last type

of district. Each of these scenarios is graphed is shown in figure 11.

The optimal districting strategy can be stated simply as follows. You start with the

districts you are going to win for sure. Fill as many districts as possible half full with

Republicans. Fill the other half of those districts with Democrats (cracking). If there aren’t

enough Democrats, continue filling with Independents. If there aren’t enough Independents,

fill remainder with Republicans. After filling these districts entirely, all remaining Democrats
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Figure 11: Splitting the state’s population into optimal districts.

are placed into their own districts (packing). Then, all remaining Independents are placed

into their own districts. So, there are districts that are 50 percent Republican, and 50 percent

Democrat or Independent (Democrat is preferred). There are districts that are 100 percent

Democrat. Finally, there are districts that are 100 percent Independent.

Proposition 2. The maximum expected fraction of seats Republicans can win is

vR =


1 if πR ≥ 1

2

2πR + 1
2

(πI − (πR − πD)) if πD < πR <
1
2

2πR + 1
2
πI if πR ≤ πD.

(41)

This can be rewritten as

vR = min

{
1 , 2πR +

1

2
(πI −max {0, πR − πD})

}
. (42)

If there are fewer Republicans than Democrats, you fill as many districts as possible

with half Republicans and half Democrats. You will win all these. There are 2πR of these

districts. Then you have all the Independents in their own districts. You win half of these.

There are πI of these districts. Finally, the rest of the Democrats are in their own districts

and you don’t win any of those. Hence, your expected number of seats is 2πR + 1
2
πI .
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If there are more Republicans than Democrats, you do the same strategy. The difference

is that you now have to put some Independents in the first type of district (the guaranteed

wins) because there aren’t enough Democrats to fill them. From the payoff you need to

subtract off the Independents put in the first type of district so they aren’t double counted.

This will continue until you are able to fill all the districts half way with Republicans.

Then the payoff is flat at one. Any additional Republicans are superfluous.

7 Conclusion

Gerrymandering is a topic fiercely debated every ten years when congressional districts are

redrawn. It is important because it can have a significant impact on who gets elected and

ultimately on what policies are put into place. A fundamental question we should ask about

gerrymandering is what seat-vote curves would we expect to see in equilibrium and what are

the socially optimal seat-vote curves.

In this paper, I present a model of states choosing seat-vote curves to compete with each

other over the policy that is passed. I first solve for the optimal districting strategy of one

trying to maximize the expected number of seats won by a given party. I showed that the

party drawing the districts can win a significantly higher fraction of seats than their share

of supporters in the population. The optimal districting strategy involved both “packing”

and “cracking”.

I then consider a district designer that cares only about maximizing the welfare of their

state’s citizens. I find that in equilibrium, every state chooses an extreme seat-vote curve

to disproportionately affect policy in their favor. This motive is especially strong in smaller

states. In equilibrium, the slope of each state’s seat-vote curve is proportional to one over

the number of representatives they have.

I show that there is a deadweight loss to society in equilibrium. If every state were

to commit to playing a more modest seat-vote curve, a Pareto improvement could be had.

However, each state has an incentive to deviate, making this a Prisoner’s Dilemma.

I also find that the optimal seat-vote curve can be approximately implemented with a

very simple rule. This is a winner-take-all election for the state’s representatives. If policy is

chosen entirely by the majority party in congress, then this winner-take-all election becomes

exactly the unique optimal rule for each state.

I then estimate the seat-vote curves for each of the 50 states. I find that seat vote curves

are highly responsive. I also find that small states choose steeper seat-vote curves than larger

states. The slope of the seat-vote curve in a state is approximately proportional to one over

the number of representatives that state has in congress. This is the same relationship found
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in the equilibrium model. This relationship holds after controlling for the political party in

power.

30



References

Aumann, R. J. and Maschler, M. B. (1995). Repeated Games with Incomplete Information.

MIT Press, Cambridge, MA.

Bergmann, D., Brooks, B., and Morris, S. (2015). The limits of price discrimination. Amer-

ican Economic Review, 105(3):921–957.

Bracco, E. (2013). Optimal districting with endogenous party platforms. Journal of Public

Economics, 104:1–13.

Carson, J. and Crespin, M. (2004). The effect of state redistricting methods on electoral

competition in the united states house of representatives races. State Politics and Policy

Quarterly, 4(4):455–469.

Coate, S. and Knight, B. (2007). Socially optimal redistricting: A theoretical and empirical

exploration. Quarterly Journal of Economics, 122(4):1409–1471.

Friedman, J. N. and Holden, R. T. (2008). Optimal gerrymandering: Sometimes pack, but

never crack. American Economic Review, 98(1):113–144.

Gilligan, T. W. and Matsusaka, J. G. (2006). Public choice principles of redistricting. Public

Choice, 129(3/4):381–398.

Gul, F. and Pesendorfer, W. (2010). Strategic redistricting. American Economic Review,

100(4):1616–1641.

Kamenica, E. and Gentzkow, M. (2011). Bayesian persuasion. American Economic Review,

101(6):2590–2615.

Kolotilin, A. and Wolitzky, A. (2020). The economics of partisan gerrymandering. Working

Paper.

Owen, G. and Grofman, B. (1988). Optimal partisan gerrymandering. Political Geography

Quarterly, 7(1):5–22.

31



8 Appendix A

I have not yet completely characterized the equilibrium of the game. What we have is the

best response of state i as a function of the seat-vote curves of all the other states. The

equilibrium is the fixed point of all these functions. Notice in equation (19) that the other

states’ chosen curves only enter the best response in a very simple way. State i only cares

about the expected fraction of seats the other states will elect from the Democratic Party,∑
j 6=injE

[
S∗j
]
. This makes the system easy to solve.

For notational simplicity, let’s call si = E[S∗i (vi)]. Using equation (17) we see that the

state will be in the interior portion of their seat-vote curve whenever

0 <
1

ni
(πDi + πIi(1−mi)−

∑
j 6=i

njsj) < 1. (43)

Simplifying, the state will be in the highly responsive portion of the seat-vote curve as long

as the median independent voter isn’t too far to either extreme.

1− 1

πIi
(ni +

∑
j 6=i

njsj − πDi) < mi < 1− 1

πIi
(
∑
j 6=i

njsj − πDi). (44)

Also, S∗i (vi) will be equal to 1 whenever the median independent, mi, is below that lower

cutoff.

Now the goal is to take the expected value of equation (20) to get the average fraction of

seats that go to Democrats in state i. There are three segments to the best response function

we need to average over. On the first segment, Democrats get zero seats. So, this drops out

of the equation. In the middle segment we integrate over the likelihood of each value. On

the third segment, Democrats get all the seats. So, the contribution to the expectation is

just the probability of being in this segment times 1. The likelihood of this is equal to the

cdf of mi at the cutoff. Since mi is uniformly distributed on [1
2
− εi, 12 + εi], the probability

that S∗i (vi) = 1 equals the following.

pi =
1− 1

πIi
(ni +

∑
j 6=i njsj − πDi)− (1

2
− ε)

2εi
. (45)

Now we can compute the expected number of seats Democrats will win in state i.

si = E[S∗i (mi)] (46)

=

∫ 1− 1
πIi

(
∑
j 6=i njsj−πDi)

1− 1
πIi

(ni+
∑
j 6=i njsj−πDi)

1

ni
(πDi + πIi(1−m)−

∑
j 6=i

njsj)
dm

2εi
(47)
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+
1− 1

πIi
(ni +

∑
j 6=i njsj − πDi)− (1

2
− εi)

2εi
(48)

=
πDi + πIi −

∑
j 6=i njsj

2πIiεi
−πIi

2εi

∫ 1− 1
πIi

(
∑
j 6=i njsj−πDi)

1− 1
πIi

(ni+
∑
j 6=i njsj−πDi)

m dm (49)

+
1− 1

πIi
(ni +

∑
j 6=i njsj − πDi)− (1

2
− εi)

2εi
(50)

=
πDi + πIi −

∑
j 6=i njsj

2πIiεi
+

ni
2πIiεi

(1− 1

πIi
(ni +

∑
j 6=i

njcj − πDi)) (51)

+
1− 1

πIi
(ni +

∑
j 6=i njsj − πDi)− (1

2
− εi)

2εi
(52)

This gives a system of 50 equations and 50 unknowns. Solving for the 50 si terms that

satisfy this system will finish the construction of the equilibrium. While this initially looks

messy, we now have si written as a linear function of all sj with j 6= i. We can write the

equation simply as

As = b (53)

where b is an M × 1 vector with

bi =
1

2
+

2πDi + 3
2
πIi − n2

i − ni + niπIi − niπIiπDi
2πIiεi

(54)

and A is an M ×M matrix with

Aij =


(
ni
πIi

+2
)
nj

2πIiεi
if i 6= j

1 if i = j.
(55)

This A matrix is always full rank. This means that there always exists a unique solution.

The solution gives us the final constants we needed in the best response function. Thus, it

completes the equilibrium.
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