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Abstract

Changes in the price of a financial asset represent learning as the market updates

its expectation about fundamentals. In this paper I characterize what price dynamics

are possible when the information is being released strategically by a profit maximizing

trader and market participants are Bayesian. I study how information is incorporated

into prices over time in a model with general trading strategies that allow for the spread

of false information and price manipulation. Every period an informed trader reveals

their information by buying or selling an asset. After observing the trade, beliefs

and prices are updated. The informed trader’s preferred equilibrium is characterized

with and without commitment leading to starkly different results. Regardless of how

beliefs impact prices, the optimal strategy is to release nearly all information suddenly

at randomized times. The optimum resembles a pump-and-dump price manipulation

scheme and can lead to sudden crashes or spikes in the price of the asset. In the limit,

the price converges to a Poisson process. If the trader can commit to a strategy ex ante,

they can improve by releasing their information gradually mixed with nearly an equal

amount of misinformation. This strategy leads to volatile price paths that bounce back
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and forth each period. In the continuous time limit, the price process converges to a

Brownian motion. This paper gives a micro-foundation to price processes commonly

assumed in the literature.

JEL Classification: D82, D83, G14

1 Introduction

Information is at the core of financial markets. In a frictionless market an asset’s price is a

reflection of the market’s beliefs about fundamentals. Dynamics of prices are therefore driven

by learning as the market updates its expectation about these fundamentals. Does supposing

the market to be rational and use Bayesian updating put any restriction on the dynamics we

would expect to see in asset prices? Going even further, suppose that the new information

that leads to the market learning doesn’t just arrive exogenously. If the new information is

being released by a strategic trader maximizing their profit, can we infer anything about what

price dynamics should be possible? In fact, the informed agent behaving optimally along

with the market being Bayesian and efficient implies a strict characterization of possible

price dynamics. The subject of this paper is deriving these dynamics.

In this paper I use a theoretical model to study how information gets incorporated into

prices. Begin with a trader holding some information not commonly known to the rest of the

market. As the informed trader acts over time their actions reveal information. The market

price will continuously adjust as the market updates its beliefs to reflect the information

revealed. I study the dynamics of prices through this process.

I present a dynamic trading game between a large informed trader and a competitive

fringe of uninformed traders. I allow for general trading strategies, beyond most microstruc-

ture models. I show that rather than focusing on trades, the problem can be rewritten to

focus on the beliefs induced after each trade. I am then able to use information design

techniques to solve for the equilibrium. The informed trader is going to profit by being long

2



when the price of the asset goes up and short when the price goes down. Since the price

is driven by beliefs, the informed trader needs to use their trades to try to persuade the

Bayesian market of uninformed traders.

A famous story of Nathan Rothschild gives us an example of such persuasion. On the

18th of June 1815 the British allies defeated Napoleon’s army in the Battle of Waterloo.

This victory effectively ended the Napoleonic Wars. Now, this isn’t a paper about wars and

history. Information and finance come into this story because banker Nathan Rothschild was

the first person in London to hear the news of the British victory. He may have gotten the

news through a series of horseback couriers, or through his prized racing pigeons, but it is

believed that Rothschild heard the news a full 48 hours before others. Rothschild predicted

that the price of British consols would rise with this news. However, Rothschild didn’t use

this knowledge to buy consols, at least, not initially. Rothschild began to publicly sell large

amounts of consols. Word of his trading activity spread quickly. Everyone assumed that

Rothschild knew the outcome of the battle. His selling was interpreted to to mean that the

British must have lost the battle. The price of consols dropped dramatically. Shortly before

news of the battle arrives, Rothschild then buys a large quantity of consols at this lower

price. The correct news of the victory causes the price to rise. Rothschild was able to use

his information to profit from both the downswing and the upswing in price. For more on

this story, see Morton (1962).

This story raises a lot of questions. How can such a profitable strategy be possible? Does

it rely on non-rational agents? If all the market participants are fully rational, shouldn’t

they foresee that Rothschild has an incentive to manipulate them in this way? If the market

sees this incentive, they won’t be convinced when Rothschild sells. The price doesn’t fall,

then the strategy is no longer profitable. The main question arises. Is information based

price manipulation of this form possible when market participants are fully rational.

I show that manipulation is possible with rational traders, and it is optimal. The equilib-

rium will feature the informed trader trading against their information to mislead markets
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often. The equilibrium strategy is much like the strategy of Nathan Rothschild. Suppose

the information is bad and the price today is low. The informed trader will almost always

choose to be long in the asset for a time to drive the price up before selling the asset and

revealing the state to be bad. This is a strategy seen in practice. The SEC prosecutes such

“pump-and-dump” schemers every year. If the price is high today and the information is

bad, the reverse strategy, known as a “short-and-distort,” will be employed. When the price

is low, the market knows the informed trader has an incentive the manipulate by buying.

The market knows in equilibrium that the trader will almost always buy. This knowledge

makes the act of buying not very informative. Thus, the informed trader will initially buy

and the price will only slowly move upward. The informed trader is randomizing between

almost always buying and the price drifting up a small amount, and with low probability

selling and causing the price to crash as they reveal the information to be bad. If you take

the continuous time limit of the game, the price process will converge exactly to a Poisson

process with a drift. This leads to a price path with sudden discontinuous crashes or jumps.

All information is revealed in finite time.

If the informed trader was able to commit themselves ex ante to a trading strategy,

they could generate much higher profits than they get from the simple “pump-and-dump”

scheme. It is natural to ask why the trader doesn’t do a Rothschild style manipulation

scheme more than once. Perhaps the trader could sell the asset to drive the price down, then

buy the asset and try to drive the price up, before finally selling again. It turns out that this

wouldn’t normally be possible in equilibrium with rational agents. If the market price was

responding to both buy and sell actions from the informed trader multiple times, the informed

trader would have an incentive to continue manipulating the price back and forth indefinitely

without revealing any information. Since information isn’t being revealed, rational players

won’t respond at all to these trades and the price won’t move. The manipulation will fail to be

convincing and therefore fail to be profitable. However, if the informed trader could commit

to a trading strategy, suddenly the impossible becomes possible. The trader could commit to
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only manipulate with some frequency and to reveal the true information over time. Then the

trades will still be informative and prices will still respond. This commitment assumption is

akin to the common commitment assumption in the Bayesian Persuasion literature.

In the optimal strategy, the trader will manipulate the price as many times as possible.

This will make the size of the market response to each trade increasingly small. In each

period the trader will buy or sell the asset, effectively announcing good or bad news, with

nearly equal frequency. This strategy will cause the price to move a very small amount up

or down each period. As we again take the continuous time limit, we will see that the price

process will now converge to one driven by a Brownian motion. The equilibrium price is now

a strictly positive Itó process with drift and variance depending on the what the information

means for the asset’s value. The asset will have continuous but spiky price paths. These

characteristics are completely opposite the the equilibrium prices when the informed trader

did not have commitment. This Itó process turns out to be the most variation in price that

is possible due to information alone. Only asymptotically is all of the informed trader’s

information revealed.

The Itó and Poisson processes arise completely endogenously as the optimal strategy of

an informed trader. Nothing in the setup of the model is Normal or Poisson to lead to

these distributions. Throughout finance and particularly fields like option pricing, an Itó

process possibly with a Poisson process added on form the dynamics of a stock price. This is

typically assumed for tractability, but my model gives a micro-foundation for these to arise

as the natural stochastic process for prices. In papers of learning and information acquisition

the arrival of information is typically modeled to be either Brownian or Poisson. My model

shows that such information flows may be motivated by the information being obtained from

a strategic player.

The setup of the model is intentionally kept simple. The purpose of this paper is to study

the natural dynamics that arise from price discovery. This paper is not meant to focus on

dynamics that are driven by particular frictions or inefficiencies or by the way these frictions
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are modeled. The whole point is to strip away all these frictions get to the core dynamics

of what price discovery looks like in an efficient market. All other models with frictions will

be introducing wedges that distort the market from these dynamics that have a intrinsic

strategic motive to arise. Several extensions of the model with multiple informed traders or

with more complex information are presented in the appendix.

1.1 Literature Review

The theoretical study of how prices move in an efficient capital market goes back for several

decades. See seminal works such as Samuelson (1965), Fama (1970), and Grossman and

Stiglitz (1980). I am going to approach this topic with a model merging the literatures on

strategic informed trading and dynamic information design.

Questions of strategic informed trading are often studied using a variant of Kyle (1985).

Many of these study whether the trader’s private information gets full incorporated into the

price. Some examples of this are Holden and Subrahmanyam (1992), Foster and Viswan-

nathan (1996), Ostrovsky (2012), and many others. Other models of prices in financial mar-

kets with informed strategic trading that don’t use Kyle (1985) usually derive from Glosten

and Milgrom (1985), Hellwig (1980), or Hanson (2003, 2007). My model is the limiting case

of all of these models as the asset becomes more liquid. Thus mine will be studying strategic

trading in a frictionless efficient market. Also, most strategic trading models don’t allow for

manipulative trading strategies. A few papers that do study manipulative trading strate-

gies include Van Bommel (2003), Benabou and Laroque (1992), and John and Narayanan

(1997). This paper will extend their work by allowing for a completely general set of trading

strategies.

I show that the model can be solved using information design techniques. Even though

no messages are being sent directly, the model can be transformed to a cheap talk model as

popularized by Crawford and Sobel (1982). In cheap talk games with “transparent motives”

Lipnowski and Ravid (2020) develop techniques for solving for the sender’s preferred equi-
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librium. I take their techniques to a dynamic setting. When my trader has the ability to

commit, the model can be transformed to a Bayesian persuasion model. Bayesian persua-

sion models of communication with commitment were developed in Kamenica and Gentzkow

(2011) and build from Aumann and Maschler (1995). It has been shown that these can be

extended to dynamic settings in several recent papers including Ely (2017), Renault et al.

(2017), Orlov et al. (2020), and Hörner and Skrzypacz (2016).

The closest paper to mine in the information design literature is Ely et al. (2015). They

characterize the most an informed sender can surprise an uninformed receiver. This is

close to my paper because the informed trader wants to profit by moving prices and does

this in effect by surprising the market. If the price of the asset was taken to be a simple

expected value, my model with commitment would then reduce to theirs. So, this paper

extends their results to more general measures of surprise and computes the surprise optimal

policy without commitment. A mathematical paper Mertens and Zamir (1977) computes the

maximal variation a bounded martingale can have. Since beliefs are a bounded martingales

and prices are a function of beliefs, the surprise model of Ely et al. (2015), the commitment

model of this paper, and De Meyer and Saley (2003) and De Meyer (2010) that look for a

strategic foundation for the Brownian motion, can all be thought of as building off of Mertens

and Zamir (1977). This paper also addresses the question of how much volatility in price

can be caused by information alone, see Shiller (1981).

My results from the model without commitment look a lot like the solution of Zhong

(2022), who studies dynamic information acquisition. They show how a Poisson process

gives the most uncertainty across time, and that exponentially discounting agents are risk

loving over lotteries across time. This same logic applies to the strategy of my trader without

commitment power. The trader receives a large payout when they reveal the true state, and

they have an incentive to disperse the timing of that payoff.
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2 Model

In this section I present the main model, extensions can be found in the appendix. All that

is needed is a strategic trader with private information, and prices.

2.1 Informed Trader

There is a permanent unknown state of the world ω ∈ {0, 1} that is relevant to the price

of the asset. The informed trader knows the value of ω and the rest of the market has

prior probability µ0 that ω = 1. The risk neutral informed trader chooses how much of the

asset to hold at each point in time, xt, to maximize expected discounted profit. Because

the objective is linear, a bang-bang solution obtains and the insider would like to hold an

infinite number of shares of the asset. I restrict the number of shares that can be held to

xt ∈ [−1, 1]. The trader has a capacity constraint, not a trading constraint. When T is

finite, I will force xT = 0 so that the payoffs to the insider don’t include any final value of

holding the asset at the end of the game.

The payoff to the trader is the following.

V (µ0) = max
xt

E
[∫ T

0

e−rtxtdpt

]
(1)

However, the plan is to use a discretization of the payoff and only look at the continuous-time

game as the limit of the discrete version. Call δ = e−r∆t. The payoff function will then be

V (µ0) = max
xt

E

[
T∑
t=0

δt(pt+1 − pt)xt

]
. (2)

Each morning, the trader wakes up, sees the price, and decides how much to buy or sell of the

asset. If the price increases by three dollars today, the trader receives a payoff of three, times

the number of shares they are holding. Note that the payoff from a price change happens

immediately rather than when the asset position is closed. This could be for psychological
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reasons or because the asset is marked-to-market.

The expectation won’t be important at this point of the model. The only natural un-

certainty in the model is ω, which is known to the informed trader. There will be further

uncertainty due to the fact that the informed trader will randomize, but again that is known

to the trader. The only time the expectation would be meaningful would be if the market

price is random given ω, but that won’t be the case in equilibrium.

As you can see from the objective function, the asset pays no dividends during the game.

This means that the only profit to the informed trader comes from changes in the price. You

can also think of the next dividend of the asset being far enough in the future to be beyond

the horizon of the game (Amazon stock etc.) or think of the asset as having intrinsic value

to others but not the insider (foreign currency, commodities, etc.).

2.2 Competitive Fringe

There is a perfectly competitive fringe of uninformed traders that provide liquidity to the

market. The fringe is a stand-in for the rest of the market, and will be left largely unmodeled.

Each member myopically chooses prices at which to stand willing to buy and sell the asset.

Being uninformed, the liquidity traders will obviously lose money in their trades with the

informed trader, but will presumably make up for it by profiting off of all their other trades

with uninformed traders. As the number of uninformed trades grows relative to the size

of the informed trader, the market becomes more liquid. As an approximation to a highly

liquid well-functioning market, we’ll suppose that competition has driven the bid-ask spread

to zero. Thus, each member of the competitive fringe is choosing a single price to maximize

their payoffs from exogenous factors such as noise traders. The problem each period is

max
pt∈R

U(pt, µt) (3)
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with U(pt, µt) left general. µt is the competitive fringe’s belief that ω = 1 given information

up to period t. Each period the fringe will observe the trades made by the informed trader and

from that observation make inferences about the state. The competitive fringe is comprised

of fully rational Bayesians.

The simplest example is thinking of a robot market maker that simply sets the price equal

to some expected value, like in Kyle (1985) and others. Another example is to consider a

large market where the price follows a standard equation for stochastic discount factor m

and asset payoffs z by having

U(pt, µt) = Eµt
[
(pt −m(ω)z(ω))2] . (4)

The point is that a price is chosen every period according to some myopic process, and

that the price incorporates information that is revealed by the informed trader’s actions.

2.3 Equilibrium

I will solve for the Perfect Bayesian Equilibrium that gives the highest payoff to the informed

trader. Call ht the publicly observable history up to time t (all the prices and trades).

The equilibrium consists of a trading strategy for the informed trader, Xt(ω, h
t), a pricing

strategy for the competitive fringe, Pt(h
t), and beliefs, µt(h

t), that satisfy the following three

conditions.

� The informed trader optimizes: holding fixed Pt(h
t) and µt(h

t), Xt(ω, h
t) solves

Xt(ω, h
t) ∈ argmax

xt∈[−1,1]

E

[
T∑
t=0

δt(pt+1 − pt)xt

]
(5)

� The competitive fringe optimizes: holding fixed Xt(ω, h
t) and µt(h

t), Pt(h
t) solves

Pt(h
t) ∈ argmax

pt∈R
U(pt, µt) ∀t (6)
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� Consistency: µt(h
t) is obtained from Bayes’s rule using Xt(ω, h

t) where possible.

There are infinitely many such equilibrium. I will focus on finding the one that gives the

highest payoff to the informed trader.

3 Profit Maximizing Equilibrium

The strategy to solving for the informed trader’s maximal equilibrium profit is as follows.

Write the recursive formulation of the problem. Translate the problem into one of choosing

posteriors rather than trades. Assume the function P (µ) is single-valued, continuous, and

monotone. Do value function iteration by hand with an initial guess of V (µ) = 0. We will

see that our iteration will converge to the optimum in only two steps. After studying the

solution, I take the limit to continuous time and further analyze the dynamics of prices.

Similar to a mechanism design problem, I will set up the problem as one of choosing all

variables (prices, beliefs, and trades) subjects to constraints for incentive compatibility and

Bayesian updating to insure that it is an equilibrium of the game. So, I maximize expected

discounted profit subject to the three equilibrium conditions listed in the previous section

(5, 6, and Bayes’ rule). As the competitive fringe is myopic, the price will not depend on

t or even ht beyond the information conveyed in µt. Suppose that P (µt) is single valued

for all values of µt and monotone. The incentive constraint for the competitive fringe to be

maximizing is then simply pt = P (µt). We can plug this straight into the problem setup.

Notice that the profit made in each period is bounded by P (1)−P (0). Now when T =∞,

we can write the following recursive formulation.

V (µ) = max
x∈[−1,1]

E [(P (µ′)− P (µ))x+ δV (µ′)] (7)

subject to µ′ being derived by Bayes’ rule and incentive compatibility for the informed trader

(5).
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We are trying to find both trades, x, and posteriors, µ′, to maximize our objective. Since

these are linked by Bayes’ rule, we can maximize over either one and take the other as a

function of that variable. Take any two posteriors on opposite sides of the prior, µ̄ ≥ µ ≥ µ.

By rearranging Bayes rule, we can see that there always exists a mixed strategy for x such

that these posteriors would be induced after buying (x = 1) and selling (x = −1).

π(x = 1|ω = 1) =
µ̄(µ− µ)

µ(µ̄− µ)
; π(x = 1|ω = 0) =

(1− µ̄)(µ− µ)

(1− µ)(µ̄− µ)
(8)

In fact, any distribution of posteriors that averages out to the prior can be induced by

some trading strategy, but in this two state model we won’t need more than two posteriors

in equilibrium. It will become clear that even if we write the problem as one of choosing a

general distribution of posteriors, the optimum will always only use two. Thus, we can plug in

the (potentially mixed) strategy for x directly as a function of the distribution of posteriors,

µ′. Altneratively, we can work with optimizing over x and plugging in the posteriors as

solved for by Bayes Rule. Typically, the former will be easier. In doing so, we reduce the

problem of three groups of variables (pt, xt, and µt) and three constraints to one of a single

variable (µ′) and a single constraint (5). So, the problem can be written as one of choosing

two posteriors on opposite sides of the prior subject to incentive compatibility. It will be

made clear in the next section that incentive compatibility here reduces to the two posteriors

giving the same payoff.

I will note that Bayes Rule by itself doesn’t completely pin down the trades, x, given

the posteriors. Two posteriors opposite the prior can be induced by mixing with the proper

probabilities (π specified above) over any two trade volumes (say values x1 and x2). However,

x1 is going to induce the belief and in turn the price to rise and x2 will induce the belief

and price to fall. Holding fixed the beliefs, you would like to be long as much as possible

when the price rises and short as much as possible when the price falls. Thus, the profit

maximizing strategy must have x1 = 1 and x2 = −1.
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3.1 Iteration

Assume P (µ) is continuous, and increasing. The usual arguments apply for the Contraction

Mapping Theorem, so we can iterate to find the value function. Take an initial guess of

V (µ) = 0 and consider the first iteration.

V1(µ) = max
x∈[−1,1]

E[(P (µ′)− P (µ))x] (9)

subject to Bayes Rule and incentive compatability.

Before telling you what is an equilibrium, it will be illustrative to tell you what isn’t an

equilibrium. It would seem natural to think that the informed trader should buy if the state

is good and sell if the state is bad. This won’t be supported in any equilibrium. In this

candidate equilibrium, after observing a buy beliefs would go to one and the price would rise

to P (1). After observing the trader sell price would fall to P (0). Hold the updated prices

after observing buy or sell fixed and consider the best response of the informed trader. The

trader gets a profit of P (1) − P (µ) if they buy and P (µ) − P (0) if they sell. Since price is

continuous and monotone, there is one knife edge case where these will be equal. Call that

belief µ∗.

µ∗ = P−1

(
P (1)− P (0)

2

)
(10)

If the price is currently lower than that, buying is more profitable than selling. Holding fixed

the competitive fringe’s strategy, always buying is a profitable deviation.

In essence, it isn’t credible for the informed trader to completely reveal the state because

revealing the good state is more valuable that revealing the bad state. They have an incentive

to lie when the state is bad. However, always buying (or always selling) won’t be in a

profitable equilibrium for the informed trader either. The action will be uninformative. This

means that beliefs, and therefore prices, won’t change. This gives zero profit to the informed

trader.

Therefore, any equilibrium with positive profits must the have the informed trader playing
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P (µ′)− P (µ)

P (µ)− P (µ′)

µ′

Figure 1: The upward sloping solid line is the profit from buying the asset graphed against
the posterior induced. The downward sloping line is the profit from selling the asset. An
equilibrium is a flat line on this graph that crosses the prior. The highest equilibrium profit
is shown by the dashed line.

a mixed strategy. For them to be willing to play a mixed strategy, it must be that they are

indifferent between buying and selling. This is the incentive compatibility constraint for the

informed trader, simply that the induced posteriors must give the same payoff. Consider

two posteriors on opposite sides of the prior that give the same payoff.

P (µ̄)− P (µ) = P (µ)− P (µ) (11)

If the fringe is playing P (µ̄) after observing a buy and P (µ) after observing sell, then the

informed trader is indifferent between the two actions. In fact, the informed trader’s best

response contains any mixed strategy of the two actions. As we saw above, there exists a

mixed strategy such that µ̄ and µ are the correct Bayesian updates. Thus, both players are

playing a best response. These strategies constitute an equilibrium. If we draw a graph of

the the profit to the informed trader against the posterior of the fringe, any flat line on the

graph connecting two points on opposite sides of the prior is an equilibrium profit level.

Consider the highest profit the informed trader can obtain in equilibrium. This would
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Figure 2: W (µ′) is the unmaximized value of the current period payoff, |P (µ′)−P (µ)|, plus
the continuation value V (µ′)

be the highest flat line on such a graph. If P (µ) is monotone, then the highest payoff on

either side of the posterior is at the boundary (0 or 1). Take the boundary with the lower

payoff of the two. Clearly the informed trader cannot get a higher payoff than that. If P (µ)

is continuous, the Intermediate Value Theorem says there must be a posterior on the other

side of the prior that gives the same payoff.

This gives the new value function after one iteration.

V1(µ) = min {P (µ)− P (0), P (1)− P (µ)} (12)

3.2 Solution

To do the next iteration, all we need to do is find the highest flat line on

W (µ′) = |P (µ′)− P (µ)|+ δV1(µ′), (13)

the one period payoff and the continuation value function from the previous iteration.
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Just as in the previous iteration, W (µ′) is decreasing for µ′ < µ∗ and increasing after-

wards. Take µ < µ∗. For any δ < 1, W (µ′) is decreasing on [0, µ]. Take µ̂ ∈ [0, µ].

W (µ̂) = P (µ)− P (µ̂) + δ(P (µ̂)− P (0)) (14)

< P (µ)− P (0) (15)

So, the highest payoff to the left of the prior is still at the boundary. Similarly, the highest

payoff to the right is at the other boundary. Again, by continuity the minimum of these can

be obtained by an equilibrium. This gives our value function. This is the same value we had

in the previous iteration. Thus, we have found a fixed point.

Proposition 1. Let P (µ) be continuous and monotone. For any discount factor, δ ∈ [0, 1),

the value is

V (µ) = min {P (µ)− P (0), P (1)− P (µ)} (16)

3.3 Price Dynamics

The endpoints of the flat line giving the value are the posteriors that are induced by the

optimal strategy. We saw that one endpoint is always at the boundary (0 or 1), but the other

is generally interior. Take µ < µ∗. When the informed trader sells, this perfectly reveals the

state to be bad and beliefs fall to zero. When the insider buys, beliefs increase to an interior

point just high enough to make the informed trader indifferent between buying and selling.

To see the optimal strategy used, we plot the unmaximized objective function, W (µ′) =

|P (µ′)− P (µ)|+ δV (µ′) (rememeber that x is plus or minus one, giving the absolute value).

We want to find the highest flat line on the one period payoff plus the the discounted

continuation value as found in the previous proposition. The absolute value in the current
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period payoff and the max in the value function can be written out as cases.

W (µ′) = |P (µ′)− P (µ)|+ δV (µ′) =


P (µ)− δP (0)− (1− δ)P (µ′) if µ′ ≤ µ

(1 + δ)P (µ′)− P (µ)− δP (0) if µ < µ′ ≤ µ∗

(1− δ)P (µ′)− P (µ) + δP (1) if µ′ > µ∗

(17)

To the left of the prior we have a strictly decreasing function of µ′, so the left endpoint

will be zero. To the right of the prior, the function is increasing and continuous. Thus there

will be a posterior to the right of the prior giving the same value as the left extreme (µ′ = 0).

The right endpoint could be on the second or third segment of the curve W (µ′).

µ̄ =


P−1

(
2P (µ)−(1−δ)P (0)

1+δ

)
if µ ≤ P−1

(
P (1)(1+δ)+P (0)(3−δ)

4

)
P−1

(
2P (µ)−P (0)−δP (1)

1−δ

)
otherwise

(18)

This equation doesn’t look pretty or have a nice intuition to it, but it is important to

note that unlike the height of the line or the left endpoint, the right endpoint does depend

on δ.

3.3.1 Continuous Time Limit

We want to study the dynamics of pricing in the continuous time limit of the game. To do

this, think about the periods shrinking. Consider the limit as δ goes to 1. After the informed

trader sells beliefs still drop all the way to 0 regardless of δ. After the trader buys beliefs

move up to the right endpoint described above. This right endpoint is moving closer and

closer to the prior as δ goes to 1. You can see this because the slope of the one period payoff

and the slope of the value function are excatly opposite. This means that as δ goes to one,

the sum is approaching a constant (at least on the first and third segments of the function

W (µ′)). Since µ is constant, µ̄ is shrinking toward the prior, and beliefs are a martingale,

the frequency of the jumps down to P (0) needs to be going to 0. The likelihood that beliefs
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1µ

µ′

Wµ(µ′)

Figure 3: W (µ′) for δ = {0, .2, .4, .6, .7, .8, .9, .95}.

just drift up the small amount in a given period goes to 1. Though not obvious from looking

at the graph, in the appendix I show that the probability of a jump is shrinking to 0 at a

linear rate in 1− δ. This gives us the first main result of the paper.

Theorem 1. For any differentiable strictly monotone price function, P (µ), as δ goes to one

the price process converges to a Poisson process.

� If µt < µ∗,

dP (µt) =
r

2
(P (µt)− P (0))dt− (P (µt)− P (0))dNt (19)

where Nt is a standard Poisson process with arrival rate λ = r
2
P (µt)−P (0)
µtP ′(µt)

.

� If µt > µ∗,

dP (µt) = −r
2

(P (1)− P (µt))dt+ (P (1)− P (µt))dNt (20)

where Nt is a standard Poisson process with arrival rate λ = r
2
P (1)−P (µt)
(1−µt)P ′(µt)

.

� If µt = µ∗, all information is revealed immediately and the price jumps to either P (1)

or P (0).

Consider a low initial price (µ < µ∗). With a Poisson arrival rate the informed trader

will sell the asset and completely reveal that the state is bad. This makes the price crash
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P (1)

P (0)

P (µ∗)

t̂ t

P (µt)

Figure 4: Sample price paths when the price starts high (green) and when the price starts
low (red).

to P (0). While this Poisson information hasn’t arrived, the informed trader will hold a long

position in the asset and the price will slowly drift upward. If the price starts high, the

dynamics are simply the mirror image. With a Poisson arrival rate the informed trader will

buy and the price will spike to P (1). At all other times the informed trader holds a short

position and the price drifts down. If the beliefs ever reach µ∗, the informed trader perfectly

reveals the state, good or bad.

The arrival rate can be obtained intuitively by considering the informed trader’s incentive

compatibility constraint. The informed trader must be indifferent between revealing the

state to be bad today or letting the price drift up a little and revealing the state to be bad

tomorrow. Call λ the arrival rate of the Poisson process. Once it arrives, beliefs jump down

to zero. In order for beliefs to be a martingale, the drift must equal λtµt. The drift in price

is then equal to λtµtP
′(µt).

P (µt)− P (0)︸ ︷︷ ︸
reveal today

≈ P ′(µt)µtλt︸ ︷︷ ︸
drift today

+ δ (P ′(µt)µtλt + P (µt)− P (0))︸ ︷︷ ︸
reveal tomorrow

(21)
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As δ gets large, this gives a linear relationship between λ and 1− δ.

⇒ λt ≈
P (µt)− P (0)

2µtP ′(µt)
(1− δ) (22)

3.4 Intuition

If the price starts low, the dynamics look like a pump-and-dump scheme. The informed

trader buys every period and spreads good information to pump up the value of the asset.

Then, at a random arrival date they dump all their shares and reveal the asset to be bad.

This causes the price to crash suddenly. If the asset actually is good that crash date never

comes, hence the positive drift.

If the price starts high we have the mirroring dynamics. The informed trader sells each

period causing the price to drift down. If the asset is actually good, then at a random arrival

rate they buy back all the shares and reveal the state causing a sudden spike in price. This

is a short-and-distort scheme. This matches the empirical fact that pump-and-dumps are

usually done on cheap stocks and short-and-distorts on more expensive stocks.

The form of the optimal strategy comes from the intuition in the one period model for

why buy when good sell when bad isn’t an equilibrium. If the price is initially low, the

informed trader can’t credibly reveal the state because revealing the good state is better

than revealing the bad state. They’d like to lie and always say it’s the good state.

The dynamics give them that credibility. When the informed trader says the state is

bad, the fringe believes them and moves the price all the way to P (0). When the informed

trader says the state is good, the fringe mostly doesn’t believe it because there is a much

bigger potential gain from the state being good. Price increases only a small amount. After

many periods of repeatedly saying the state is good, beliefs eventually drift up to µ∗ which

is the cutoff point for when the good state can be credibly revealed. The small price jump

can be done immediately, but the informed trader needs to spend time to build credibility

before they can get the big price jump.
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The arrival rate of the Poisson process depends on the function P (µ). If P (µ) is linear

then it simplifies to λ = 1
2
. If P (µ) is concave, then the arrival rate will be bigger than 1

2

and it will be increasing over time. If P (µ) is convex, then the arrival rate will be smaller

than 1
2

and it will be decreasing over time. You can see this by writing the Taylor series for

P (0).

P (0) = P (µt)− P ′(µt)µt +
1

2
P ′′(µt)µ

2
t + . . . (23)

This gives us an approximate equation for the arrival rate.

λ(µt) =
r

2

P (µt)− P (0)

µtP ′(µt)
≈ r

2
− r

4
µt
P ′′(µt)

P ′(µt)
(24)

We can see there how the arrival rate depends on the concavity of P (µ).

However, regardless of the curvature of P (µ), the price will always reach P (µ∗) and then

jump to the boundaries in finite time. We can see this because the magnitude of the drift

is increasing over time. Even though the arrival rate of price jumps may be increasing or

decreasing, the size of the jumps is always increasing more than enough to make up for it as

can be seen in the dt term of the price dynamics.

Proposition 2. The maximum time to full information revelation is

tmax =
2

r
log

(
P (µ∗)− P (0)

P (µ0)− P (0)

)
(25)

if µ0 ≤ µ∗ and

tmax =
2

r
log

(
P (1)− P (µ∗)

P (1)− P (µ0)

)
(26)

if µ0 > µ∗.

When the price reaches P (µ∗), which it always does in finite time, the trader is finally

able to credibly reveal all their information regardless of the state. At this point, the trader

makes the same amount of profit from revealing good news or bad news. Thus, revealing

the truth can now be in their best response.
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4 Commitment

In the previous section buy if the state is good sell if the state is bad was not an equilibrium

because the informed trader could not credibly commit to that strategy. In this section I’ll

derive the optimal policy when they do have such commitment power. Let us suppose now

that the informed trader is allowed to commit ex ante to any (potentially mixed) strategy.

Rather than choose an action (buy or sell) each period the informed trader can choose a

distribution of actions contingent on the state. For example they can buy when good and

sell when bad, or when the state is good randomize fifty-fifty between buying and selling.

This is the same type of commitment power that is assumed in the Bayesian persuasion

literature. We could equivalently think of commitment as saying the informed trader has

verifiable information to reveal. This essentially allows us to ignore the incentive compati-

bility constraint in the previous problem. This unconstrained problem is much more difficult

to solve analytically, but I can still characterize the continuous time limit as in the previous

section.

Even though “buy when the state is good sell when the state is bad” is clearly going to

be optimal in the one period model in the dynamic model the solution is nearly the exact

opposite.

4.1 Example

Consider a very simple example that will allow me to fix ideas and explain the general

concepts of the model. While the model can be much more general than this example, the

intuition is similar.

There is an asset with a payoff, ω, equal to either zero or one with equal probability.

This asset is just a one dollar bet. This payoff is received once at the end of the game.

Suppose further that this asset is highly liquid, all agents are risk neutral, and there is no

discounting. What I mean by these is that at any time, you can walk down to the market
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and buy or sell a share of this asset at the posted price, which is equal to its expected value.

Since either state is equally likely, the initial price is 1
2
.

If a trader privately learns what the payoff is going to be, how can she best profit from

this information? For simplicity, say that there are two trading periods before the asset pays

out and that the trader can take a long or short position, but faces a capacity constraint of

one share (holdings x ∈ [−1, 1]). The obvious candidate strategy is that if she learns the

asset’s payoff will be high (ω = 1) she should buy the asset and if she learns that the asset’s

payoff will be low (ω = 0) she should sell the asset. This strategy would earn her a total

payoff of 1
2
. If she realizes the asset is good, she will buy it in the first period for a price of

1
2
. She then doesn’t need to do anything in the second period because she is already holding

her max amount. Then the payoffs from the asset realize and she gets 1. If the asset is

actually bad, her payoffs are just the mirror. She sells the asset in the first period for a gain

of 1
2
, then at the end of the game doesn’t need to pay back anything (ω = 0). Her payoff is

the same in either state.

Now I’m going to propose a candidate strategy that can do better than simply buying

if the asset is good and selling if it is bad. In this strategy the trader will utilize the fact

that there are multiple periods of trading by misleading the market in the first period and

manipulating prices to get a higher return in the second period. Consider the following

randomized strategy. In the first period if the trader observes the asset is good, she will buy

with probability 3
4

and sell with probability 1
4
. If she observes the asset is bad she will do

the opposite, buy with probability 1
4

and sell with probability 3
4
. Then in the second period

she will do the simple strategy of holding a long position if the asset is good and a short

position if the asset is bad, just like the previously proposed strategy above.

This strategy will give a higher payoff. To see this, we first need to know what the prices

will be in the second period. Since the price is always equal to the expected value, this is

computed using Bayes rule. If she buys the asset in the first period, the price in the second

period will be
1
2

3
4

1
2

3
4

+ 1
2

1
4

= 3
4
. If she sells in the first period, the price move the opposite way,

23



1
2

1
4

1
2

1
4

+ 1
2

3
4

= 1
4
.

Let’s now compute the trader’s expected payoff. First take the good state (ω = 1). Three

quarters of the time she will buy in the first period at a price of one half, in the second period

maintains that long position with no cost, then receives a payment of one at the end of the

game. The other one quarter of the time she will sell at a price of one half in the first period,

buy at a price of one quarter in the second period, and receive a payoff of one at the end of

the game. This gives an expected payoff of

3

4

(
−1

2
+ 1

)
+

1

4

(
1

2
− 2

1

4
+ 1

)
=

5

8

which is larger than 1
2
. If the state is bad we can get the payoff with a similar calculation.

3

4

(
1

2
− 0

)
+

1

4

(
−1

2
+ 2

3

4
− 0

)
=

5

8

Most of the time the trader does the usual strategy of buying when the asset is good

and selling when it is bad to get a payoff of 1
2
. Occasionally, she trades opposite of her

information in the first period. This allows her to transact at a more favorable price in the

second period. This manipulation earns a higher payoff whether the asset is good or bad.

If there were three periods of trading, the trader would be able to manipulate prices for

two periods before taking the obvious trade in the last period. If there are many trading

periods, the optimal strategy involves the trader potentially moving prices back and forth

between higher and lower levels many times before the end. In fact, in the limit as you took

an infinite number of trading periods the price would approach a Brownian motion. Every

period she would choose to buy or sell with nearly equal probability. This will cause the

price to continue to bounce up or down by infinitesimal amounts.

In turns out that 5
8

is the highest payout the trader can guarantee herself in this two period

game. Notice, however, that achieving this requires a strong amount of commitment on the

part of the trader. If not committed ex ante, the trader has an incentive to deviate from
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the outlined strategy some of the time. When the asset is good, the trader mixes between

buying and selling in the first state. When she buys in the first stage the trader gets a payoff

of 1
2
, but when she sells in the first stage the trader gets a payoff of 1. Recall that the market

doesn’t observe the state (ω), only the trade. Hold fixed the market prices(p1 = 1
2
, p2 = 3

4
if

buy is observed in the first period, and p2 = 1
4

if sell is observed in the first period). When

the asset is good, the trader will always prefer to sell and manipulate the price because it

gives a higher payoff. However, the manipulation strategy is able to effectively move prices

precisely because it is done infrequently.

Thus, without commitment power this equilibrium would fall apart completely. The best

the trader can do in an equilibrium without commitment is exactly the simple strategy of

buying if the asset is good and selling if the asset is bad. This is done in one period (the

last one). In the more general form of the model with infinite periods, it is still the case

that the best the trader can do without commitment is to reveal nearly all their information

at once. The trader still will maintain a lot of power over the timing of this information

dump. The profit is maximized by randomizing of the timing of the information release. In

the continuous time limit the price will converge to a Poisson process as computed in the

previous section.

4.2 Setup

The setup of the game is entirely the same as in the previous section. The only difference

here is that the informed trader can commit to any distribution of trades. The competitive

fringe sets the market price. The trader chooses a (possibly degenerate) distribution of trades

over the interval [−1, 1]. A trade realizes. The competitive fringe observes the trade and

updates their beliefs. Then, the same thing repeats in the next period. The payoffs are as

before, except with the potential randomization of trades, the expectation operator becomes

more meaningful.

As before, we can write the problem as choosing the posteriors that will be induced
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after buying and selling subject to the constraint that beliefs are a martingale. The only

difference is that the trader does not need to be indifferent between the selected posteriors

as they can commit to going through with it even if they prefer a different trade. If we write

the posteriors as

µbuy = µ+ ε̄, and µsell = µ− ε (27)

then the martingale requirement stipulates the probabilities must be

p(buy) =
ε

ε̄+ ε
and p(sell) =

ε̄

ε̄+ ε
. (28)

The constraints ε̄ ∈ [0, 1− µ] and ε ∈ [0, µ] ensure that beliefs stay between zero and one.

The Bellman equation can then be written simply.

V (µ) = max
ε̄,ε

(|P (µ+ ε̄)− P (µ)|+ δV (µ+ ε̄))
ε

ε̄+ ε
(29)

+ (|P (µ)− P (µ− ε)|+ δV (µ− ε)) ε̄

ε̄+ ε
(30)

= max
ε̄,ε

Eµ′ [|P (µ′)− P (µ)|+ δV (µ′)] (31)

As the beliefs are a bounded martingale, the solution of this equation closely follows

Mertens and Zamir (1977). We’ll characterize the the approximate solution when it’s as-

sumed ε̄ and ε are small. Then when we take the limit to continuous time, the approximation

will give us the exact solution. First notice that |P (µ + ε̄) − P (µ)| ≈ |P ′(µ)|ε̄. Now take a

second order approximation to V (µ+ ε̄).

V (µ+ ε̄) ≈ V (µ) + V ′(µ)ε̄+
1

2
V ′′(µ)ε̄2 (32)

Put these into equation (29).

(1− δ)V (µ) = max
ε̄,ε

2|P ′(µ)| ε̄ε
ε̄+ ε

+
1

2
δV ′′(µ)ε̄ε (33)
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µµ− ε∗ µ+ ε∗
µ′

|P (µ′)− P (µ)|+ δV (µ′)

Figure 5: The faded black lines are the one period value, |P (µ′)−P (µ)|, and the continuation
value, δV (µ′). The thick red line is the sum of those two. The blue segment connecting it
gives the optimal policy and value. Beliefs either jump up or down by step size ε∗ each
period.

The main trade-off can be seen in the two right hand side terms. Giving away more

information gives a higher payoff this period because it leads to larger price changes. On the

other hand since V (µ) is concave, the more information I give away the worse my expected

continuation value.

4.3 Price Dynamics

Holding the product ε̄ε fixed, we’d like to minimize the sum ε̄+ε. This is always accomplished

when ε̄ = ε. So, this is only a problem of one variable when we have an interior solution.

(1− δ)V (µ) = max
ε
|P ′(µ)|ε+

1

2
δV ′′(µ)ε2 (34)
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Taking the derivative and setting it equal to zero yields the optimal ε.

ε∗ = − |P
′(µ)|

δV ′′(µ)
(35)

Beliefs now follow a random walk. Each period beliefs either jump up or down by a

small step of size ε∗. As δ goes to one, V (µ) and V ′′(µ) both grow in magnitude toward

infinity. This means that the step size, ε∗, is going to zero. The key is that it is going to

zero slowly (at a rate of
√

1− δ). As we take the step size shrinking to zero, this converges

to a Brownian Motion for beliefs. Itó’s Lemma gives us the process for prices which are a

smooth function of beliefs. Thus, we have the second main result. More details are given in

the appendix.

Theorem 2. Let P (µ) be any C2 function. As δ goes to one, the price converges to an Itó

Process over time.

dP (µt) =
1

2
P ′′(µt)σ

2(µt)dt+ P ′(µt)σ(µt)dBt (36)

The Bt here is a standard Brownian Motion.

4.4 Intuition

Even though optimal information release is Brownian, there is still a non-constant drift and

variance term. The function

σ(µt) =

√
2r|P ′(µt)|
V̂ ′′(µt)

(37)

is the standard deviation multiplying the Brownian increments in beliefs. V̂ (µt) is the value

function after rescaling for the discount factor. Itó’s Lemma tells us that the standard

deviation multiplying the Brownian increment on prices is then P ′(µt)σ(µt). There is higher

variance when the price is more sensitive to information.

The drift in prices is also pinned down. Since beliefs need to be a martingale, they must

have zero drift. This doesn’t mean that prices won’t have a drift. In fact, Jensen’s inequality
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tells us that the drift needs to be positive (negative) when price is a convex (concave) function

of beliefs. Itó’s Lemma confirms that the drift is 1
2
P ′′(µt)σ

2(µt)dt.

0.2 0.4 0.6 0.8 1

0.2

0.4

µ

σ(µ)

Figure 6: The standard deviation of prices as
a function of beliefs.

This is not a complete solution because

σ(µt) was defined in terms of the value func-

tion for which a complete analytical solution

cannot always be given. In the special case

of a linear price function, P (µt) = µt, the

analytic solution can be written. We then

have that

σ(µt) = n(N−1(µt))r (38)

where n(·) is the normal distribution pdf and N(·) is the normal distribution cdf.

The function σ(µt) is the normal distribution evaluated at the µt quantile. It is similar

to a geometric Brownian motion in that the standard deviation goes to zero linearly in the

price. This ensures that prices can never drop below zero. Prices are the most volatile when

there is the most uncertainty.

Figure 7: Three sample price paths when the true state
is good.

From the perspective of the in-

formed trader, the price still fol-

lows an Itó process. The variance is

the same, but the drift is different.

With the linear price function, the

drift conditional on the state be-

ing good is σ2(µt)
µt

. When the state

is bad, the drift is −σ2(µt)
1−µt . Beliefs

always drift toward the true state.

When beliefs are far from the true
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state the drift is large, and when

they are close to the truth the drift

is small. Beliefs converge to the truth over time in the weak∗ topology.

4.5 Comparison

The price paths induced with and without commitment are intuitively the opposite of each

other. With commitment, the information release happens gradually and all information is

revealed only in the limit. The price paths are continuous and highly volatile. This represents

inside information being slowly leaked to the public and being incorporated into the price.

Without commitment, all information is released suddenly in finite time. The price paths

are smooth until a discontinuous jump. This is a pump-and-dump scheme to manipulate the

price of the asset.

The dramatically different price dynamics can inform us on whether observed informa-

tion leaks are likely to be strategic. Consider the commitment assumption to be about

whether the informed trader can generate verifiable evidence or not. A strategic insider re-

leases information with verifiable evidence gradually, but unverifiable information is released

suddenly.

Together these form a micro-foundation of the price processes commonly assumed through-

out finance.

5 Persistence

Say that the state is not permanent. Assume for this section that the state follows a Markov

process. Call π1 and π0 the probability that ωt+1 = 1 conditional on ωt = 1 or 0 respectively.

The timing of the game requires a bit more care in this section. At the beginning of

period t beliefs are µt. Then, the informed trader can choose to buy or sell the asset at price

P (µt). The fringe immediately observes the trade and updates beliefs according to Bayes
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rule to µ′t. The price is updated right away and the informed trader closes their position

at price P (µ′t). Then, after trading is done ωt+1 is drawn from a Markov process. Beliefs

at this point are updated for the next period, µt+1 = π0 + (π1 − π0)µ′t. In the model with

a permanent state, µt+1 = µ′t. It wasn’t important at that point to say that the informed

trader closes their position at the end of each period, because the price at the end of each

period was the same as the price at the start of the next period. That is no longer the case.

Between periods, the state could change. Thus, beliefs and prices will also change between

each period.

There are two different ways we can think about private information of a persistent state.

The first is that the informed trader is able to see ωt every period. The second is that the

informed trader is able to see the state only in the first period, ω0. In the first, the fact

that the state is persistent rather than permanent is a good thing for the informed trader. It

means that there is more information flowing to them each period. The informed trader then

has more opportunity for profit. In the second, the fact that the state is persistent rather

than permanent is a bad thing for the informed trader. It means that their information

has less predictive power of the state as time passes. The informed trader’s information is

becoming less valuable each period.

Interestingly, both cases incentivize the informed trader to reveal information at a faster

rate. I will show in this section that even though the value and the price process will look

very different in the two cases, the optimal strategy is identical. I am not aware of any other

paper that shows this kind of relationship between the two types of private information of a

persistent state.

5.1 One Time Information

The informed trader observes ω0 but not ωt for t > 0. In this section, I will assume a linear

price function for simplicity. P (µ) = µ. It is still the case that the informed trader can

choose to buy when the price is about to go up and sell when the price is about to go down.
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The objective is

E

[
∞∑
t=0

δt|µ′t − µt|

]
(39)

where µt+1 = π0 + (π1 − π0)µ′t.

The main difference here is that the informed trader no longer has complete control over

beliefs in every period. µt is the public belief about the state in period t, but the informed

trader only knows the state in period 0. Call µ̃t the public belief in date t about the initial

state ω0. This is the belief that the informed trader can control and it is related to the belief

about the current period state.

µ0 = µ̃0

µ1 = π0 + (π1 − π0)µ̃1

...

µt =
t−1∑
τ=0

π0(π1 − π0)τ + (π1 − π0)tµ̃t

In equation 39 the informed trader is constrained by Bayes plausibility, incentive com-

patability, and shrinking bounds on where beliefs can be sent due to the informativeness of

their signal deteriorating. The level of persistence puts an upper and lower bound on beliefs

each period.
t−1∑
τ=0

π0(π1 − π0)τ ≤ µt ≤
t−1∑
τ=0

π0(π1 − π0)τ + (π1 − π0)t (40)

As time goes on, beliefs must ultimately converge to π0
1−π1+π0

regardless of the informed

trader’s actions. The martingale condition only holds within each period. Between periods

the beliefs have a drift determined solely by the persistence of the states. Intuitively, the size

of the game is just shrinking over time. We can see this precisely by rewriting the problem

in terms of µ̃t.
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E

[
∞∑
t=0

δt|µ′t − µt|

]
= E

[
∞∑
t=0

(δ(π1 − π0))t|µ̃′t − µ̃t|

]
(41)

Figure 8: The solid lines are the upper and
lower bounds on beliefs. The dashed line
shows the drift. π1 = .99, π0 = .02

The only effect of persistence on the

strategy is to reduce the discount factor. Re-

call δ = exp−r∆t, and set π1 = 1 − λ1∆t,

and π0 = λ0∆t. For small time periods,

δ̃ = δ(π1 − π0) ≈ 1 − (r + λ1 + λ0)∆t. The

arrival rate of state switches simply adds on

the the discount rate. The rest of the calcu-

lations from the proofs of theorem 1 and 2

go through the same as before.

Without commitment beliefs follow,

dµ̃t =
r + λ1 + λ0

2
µ̃tdt− µ̃tdNt (42)

if µ̃t <
1
2
, the symmetric equation if µ̃t >

1
2
, or jump immediately to 0 or 1 if µ̃t = 1

2
. The

arrival rate of the Poisson process is λ(µ̃t) = r+λ1+λ0
2

.

With commitment beliefs follow

dµ̃t =
r + λ1 + λ0

2
φ(µ̃t)dBt. (43)

Prices are not based on beliefs about what the state was in date zero, µ̃t, but on beliefs

about the current state, µt. In the limit, µt can still be written as a function of µ̃t and time.

µt =
λ0

λ1 + λ0

+ (1− λ1 − λ0)t
(
µ̃t −

λ0

λ1 + λ0

)
(44)
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Prices without commitment must then follow

dP (µt) =

(
r + λ1 + λ0

2
µ̃t + log(1− λ1 − λ0)

(
µ̃t −

λ0

λ1 + λ0

))
(1−λ1−λ0)tdt−µ̃t(1−λ1−λ0)tdNt

(45)

whenever µt < µ∗t , the symmetric equation when µt > µ∗t , and jump to the shrinking bound-

aries immediately when µt = µ∗t . Once the price hits a boundary, it remains on the boundary

for the rest of the game and continues to drift toward P
(

λ0
λ1+λ0

)
. The midpoint, µ∗t is also

changing over time now.

µ∗t =
1

2
(1− λ1 − λ0)t +

(
1− (1− λ1 − λ0)t

) λ0

λ1 + λ0

(46)

This is the dashed line in the previous figure.

With commitment prices follow

dP (µt) =

(
µt −

λ0

λ1 + λ0

)
log(1− λ0 − λ1)dt+ (1− λ1 − λ0)t

r + λ1 + λ0

2
φ(µt)dBt. (47)

(a) Without commitment (b) With commitment

Figure 9: Sample paths for prices.
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5.2 Information Flows Every Period

Basically, the persistence flattens out the continuation value function, but the current period

payoff slope remains the same. This means you still always hit a boundary. The difference is

that when you hit the boundary, the game doesn’t end. Posteriors drift back interior because

the state may switch and you can trade again. It is easy to verify by iterating that the value

function is now

V (µ) = min

{
P (µ)− P (0) + (P (π0)− P (0))

δ

1− δ
, P (1)− P (µ) + (P (1)− P (π1))

δ

1− δ

}
.

(48)

Assume the price function is linear to solve for the policy function and take the limit.

Take µ < µ∗ (µ∗ is not equal to 1
2

anymore). The left endpoint of the strategy jumps to zero

still. Some algebra reveals that the right endpoint is

µ′ =
2µ

1 + δ(π1 − π0)
. (49)

This approaches the prior, µ, as δ goes to one. This is approximately equal to

µ′ ≈ 2µ

2− (r + λ1 + λ0)∆t
. (50)

Write out the probability of jumping down to zero and simplify.

µ′ − µ
µ′

=
µ(r + λ1 + λ0)∆t

2µ
(51)

Then we have our arrival rate.

λ(µt) = lim
∆t→0

probsell
∆t

=
r + λ1 + λ0

2
(52)

Notice that this is exactly the same strategy we had for µ̃t when the informed trader only
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knew the state in period zero. The prices and value function are different, however.

dP (µt) =

(
λ0 + µt

r − λ0 − λ1

2

)
dt− µtdNt (53)

6 N states

Say that there are N possible states of nature that occur with positive probability, ω ∈

{0, 1, . . . , N − 1}. Previously, we needed the price to be a monotone function of beliefs. It’s

not as clear what that means here. What we need is for the price to be monotone along any

line in the N − 1 dimensional simplex. This will hold if the price function is linear. Call zi

the value of the asset in state i.

P (µ) =
N−1∑
i=0

µizi (54)

The resulting price process will be essentially the same as in the two state case. In the

two state case, there were three regions: low prices, high prices, and the middle price. If the

price is low, there is a Poisson process revealing the low state. As long as it doesn’t arrive,

the price drifts up until it hits the middle price, at which point whether the state is low or

not is revealed. If the price is initially high, the process is analogous. If the price starts on

the middle point, whether the state is low or high is revealed immediately.

With N states, there are three regions: low prices, high prices, and middle prices. Call

state 0 the state with the lowest price and state N − 1 the state with the highest price. If

the price is low, with a Poisson arrival rate the trader sells and reveals the state to be the

state 0. When this hasn’t arrived, the trader is buying and the beliefs are drifting in the

opposite direction (the probability of state 0 decreases and the probability of all other states

increases proportionately). The trader continues to buy until the price reaches the border

of the middle region, at which point the trader perfectly reveals whether the true state is

state 0 or not by selling or buying respectively. If the price is initially high, the trader will

buy and reveal the state to be state N − 1 with a Poisson arrival rate. As long as it doesn’t
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arrive, they sell and the price drifts down until reaching the middle region where the trader

will immediately reveal if the state is N−1 or not. If the initial price is in the middle region,

the trader will reveal one state immediately. They will either sell and reveal that the state

is not N − 1 or buy and reveal that the state is not 0.

After this happens, play will continue in the same way. There is now one less possible

state. Thus, the N state game is analogous to the two state game, but with states being

revealed by Poisson processes one at a time.

6.1 Commitment

If the informed trader is choosing xt ∈ [−1, 1], it is no longer the case that they will always

choose only x = −1, or x = 1 in the best equilibrium. In fact, the best equilibrium is not

going to exist. Since there are N states, the informed trader could generally benefit from

sending N messages. That means choosing orders of N different sizes. The informed trader

would like to place orders as large as possible accompanying each message that makes price

go up, but cannot have the order sizes be equal. The message that makes price increase

the most will be accompanied with buying x = 1 shares. The informed trader would like

the message that makes price increase the second most to be as high as possible without

being equal to 1. Such a number does not exist without some constraint forcing discrete

increments on orders. In this section I will focus on a the asset holdings of the insider being

chosen from the discrete set, xt ∈ {−1, 1}.

The problem is still equivalent to one where the informed trader chooses two posteriors

rather than choosing trades directly. With two states the informed trader only had to choose

how much beliefs increase after a buy and how much they decrease after a sell. With many

states, the informed trader is still choosing the size of the increase after buying and decrease

after selling, but they also need to choose a direction in RN−1. Let µ be an N − 1 length

vector representing the belief probabilities for all but the last state. The informed trader

chooses ε̃ from among unit vectors in RN−1. The informed trader also chooses c, c from R+.
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Beliefs will move to µ + cε̃ after observing a buy and to µ − cε̃ after observing a sell. The

martingale condition on beliefs will ensure that the two posteriors induced need to be in

exactly opposite directions of each other. This means that the insider does not get to choose

two directional vectors, only two magnitudes and one direction.

The setup of the problem still looks similar.

V (µ) = max
c,c,ε̃

(P (µ+ cε̃)− P (µ) + δV (µ+ cε̃))
c

c+ c
+(P (µ)− P (µ− cε̃) + δV (µ− cε̃)) c

c+ c

(55)

There rest looks very similar to the proof of theorem 2. We see that there is one Brownian

motion, and the probabilities of each of the N states are driven by different weights of these

states. Price is a smooth function of beliefs, so price also follows a Brownian motion.

7 Multiple Informed Traders

A Brownian motion and/or a Poisson process will still arrive if there are multiple informed

traders.

7.1 Independent Information

A natural question would be how this model could generate both the Brownian motion and

Poisson jumps at the same time. After all, this is what we seem to see in the data and option

pricing models with jumps typically have a Brownian motion with jumps not just the jumps

by themselves. This is achieved by having multiple informed traders with independent pieces

of information. Say the asset is Amazon stock. There may be one trader that can obtain

verifiable (commitment) information about the acquisition of Whole Foods, and another

trader with unverifiable (no commitment) information about the cloud computing services.

Both of these pieces of information may be relevant to the value of Amazon stock, but they

don’t necessarily need to be correlated.
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I will again explain this using a linear price function. Suppose that there are N indepen-

dent pieces of information, ωi ∈ {0, 1}, relevant to the value of the asset. Call zi the value

of the asset in state i.

P (µ1, µ2, . . . , µN) =
N∑
i=1

µizi (56)

Let’s solve the problem of some trader that knows the value of ωj, when there may potentially

be other traders that know the other pieces of information.

Trader j holds fixed the stochastic processes for µi for all i 6= j, and chooses the optimal

process for µj.

Vj(µ1, . . . , µN) = max
∆(µ′j)∈∆([0,1])

E [(P (µ′1, . . . , µ
′
N)− P (µ1, . . . , µN))xj + δVj(µ

′
1, . . . , µ

′
N)]

(57)

subject to Bayes plausibility and incentive compatibility if solving the non-commitment

problem. Trader j is also not allowed to correlate their strategy for µj with any other µi as

they don’t know those pieces of information and they are independent.

With the linear price function and independence, the problem simplifies.

Vj(µ1, . . . , µN) = max
∆(µ′j)∈∆([0,1])

E[(µ′j−µj)zjxj]+
∑
i 6=j

(E[µ′i]−µi)zixj+δE [Vj(µ
′
1, . . . , µ

′
N)] (58)

The beliefs about each piece of information must be a martingale. Regardless of what

strategy the other players use, each term in the sum is zero from trader j’s perspective.

Vj(µ1, . . . , µn) = max
∆(µj)∈∆([0,1])

E[|µ′j − µj|zj] + δE[Vj(µ1, . . . , µN)] (59)

Hence while prices and profits are quite different and will move randomly outside the

control of player j, the strategy and expected profits of player j remain the same as in the

version with only one strategic informed trader. This holds whether the other N−1 pieces of

information are being released by other strategic players or they are just randomly arriving
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by some exogenous process.

7.2 The Same Information

Suppose now that there are two identical traders that are informed of the state. In each

period the price is set, then the informed traders simultaneously submit their orders. The

equilibrium price process and strategies are exactly the same as in the one trader case, except

the arrival rate on the Poisson process may be different. Start with the case where the price

is low (below P (µ∗)). Suppose that informed trader number 2 is going to buy with a high

probability and sell with a low probability (this probability is linear in time and approaching

a Poisson process). Suppose also that the market adjust beliefs and prices up a small amount

if both informed traders buy and down to 0 and P (0) if either informed trader sells. If the

upward drift in price is just the right size, informed trader number 1 will be indifferent

between buying, selling, or randomizing with any probability (including a probability linear

in time) just as they were in the single informed trader case. Similarly, given trader 1 using

a Poisson (in the limit) strategy there is a drift in price that would make trader 2 indifferent

between buying, selling, and randomizing. By applying Bayes rule, we can see that the

amount of upward drift in price needed to make the traders indifferent only comes from a

Poisson process.

Let’s consider the same condition as in the single informed trader case to find the arrival

rate. Call π2 the probability that trader 2 sells and suppose it’s proportional to time (≈

λ2∆t). Call π1 the probability that trader 1 sells. For the sake of comparison, call λ0 the

arrival rate in the single informed trader case,

λ0 = r
P (µ)− P (0)

2P ′(µ)µ
(60)

and let’s assume the price function isn’t too concave (λ0 < 1) so everything remains well

defined. It needs to be that trader 1 is indifferent between selling to day to reveal the state
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is bad and buying today to get a small drift and selling tomorrow even with the now added

risk that trader 2 might sell and reveal the state to be bad.

P (µ)− P (0) ≈ (1− π2) (P ′(µ)µ(π1 + π2) + δ (P ′(µ)µ(π1 + π2) + P (µ)− P (0)))

− π2 (P (µ)− P (0)) (61)

Once we simplify this equation and cancel higher order terms, we can see that the fre-

quency with which trader 1 sells is also linear in time.

π1 + π2 ≈ r
P (µ)− P (0)

2P ′(µ)µ
(1 + 2λ2)(1− δ) (62)

Now we can use the symmetry to find the arrival rate, λ1 = λ2 = λ where λ1 = π1
∆t

.

Substituting in λ0 and simplifying yields,

λ =
1

2

λ0

1− λ0

. (63)

The presence of a second informed trader may increase or decrease the first trader’s arrival

rate for revealing their information depending on whether the price function is concave or

convex. If the price function is linear, the arrival rate is still equal to 1
2

as it was in the case

with a single informed trader. If the price function is concave, the arrival rate was higher

than 1
2

originally. With multiple informed traders, not only is it higher than 1
2
, but it is

higher than in the single informed trader cases as well. When the price function is convex,

the arrival rate is lower than in the single informed trader case, which is lower than 1
2
. So,

when the arrival rate is high, adding another informed trader increases it further, and when

the arrival rate is low adding another informed trader decreases it further. However, adding

a second informed trader does not decrease the speed with which information is revealed in

the market. We can see from the equation that λ is always greater than λ0
2

. So even though
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a trader may slow down their own information revelation, the total information revealed by

all traders must go up.

7.3 Coordination

In the equilibrium described in the previous section, both the informed traders are random-

izing over buying and selling in each period. It is assumed that such randomization needs to

be independent of each other. If the informed traders had access to a joint randomization

device and could coordinate their mixed strategy, this would lead to an equilibrium more

profitable for both of them. In fact, such coordination would be sufficient to to get the

informed traders the full commitment payoff despite the lack of commitment. The reasoning

for this is the same as would apply for any cheap talk game with multiple identical senders.

Suppose that the other senders are playing the full commitment strategy. You have no in-

centive to deviate because if you send any other message, you will be contradicted by the

other senders and you won’t be believed. Thus there is no profit. So even though a sender is

not committed to the optimal full commitment strategy, the fact that all the other senders

are going through with it removes any profit from deviating.

The argument is clear for cases with three or more senders. If you deviate, you will be

outnumbered. However, the result is the same with only two senders. Simply set the off-path

beliefs when the senders give conflicting messages equal to the sender’s less preferred of the

two options. Allow me to explain further in the context of my model.

Suppose there are to informed traders identical to that in the baseline model. If they

cannot coordinate their mixed strategies, the equilibrium price will follow a Poisson process

similar to the single informed trader case. If they can coordinate their mixed strategies, the

equilibrium strategy with the highest payoff is exactly the same as the strategy described

with a single informed trader that has commitment power. Thus, in the limit prices will

follow a Brownian motion. Suppose the informed traders are randomizing with the same

probabilities as in the commitment section (chapter 4). When the market sees both traders
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buy (sell) they will update their beliefs and prices to µbuy and P (µbuy) (µsell and P (µsell)).

These must be the same levels as chapter 4 because the randomization probabilities are the

same. To set off-path beliefs, if one informed trader buys while the other sells define the

beliefs in two cases. If µ ≤ µ∗, update the beliefs to µsell and if µ > µ∗ update the beliefs

to µbuy. Now consider an informed trader’s best response when the other informed trader is

playing the full commitment strategy. When the price is low (µ < µ∗), you aren’t indifferent

between buying to drive the price up to P (µbuy) and selling to drive the price down to

P (µsell). You prefer the buying option because it moves beliefs toward more uncertainty and

thus higher future profit. That is why this strategy doesn’t work in the baseline model with

one uncommitted trader. However the choice is quite different now with a second trader that

is following the commitment strategy. When the randomization device says to sell the choice

is to sell and drive the price down to P (µsell) or to buy and see the price fall to P (µsell)

anyway because of the conflicting messages from the two traders. If you try to deviate by

buying, the price still falls to the less preferred level. The only difference by deviating is

that you will lose money in the current period by being long as the price falls. Thus, you

will always want to match what the other trader is doing.

The two informed traders are not colluding and they are not committed. All they need

is coordination to get the full commitment profit levels. The incentive to match what the

other trader is doing is enough to eliminate deviations even without commitment.

8 Conclusion

Why use this model rather than a model standard model such as one based on Kyle (1985)

or Glosten and Milgrom (1985)? The goal of the paper is to study the dynamics of prices

that arise due to the release of information. Standard microstructure models have prices

that move due to activities from unmodeled or noise or liquidity traders. Dynamics of prices

are then driven by whatever process the modeler assumes for this noise. In order to find the
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price process that would arrive due to strategically released information alone, we need a

model in which only the strategic release of information moves prices. There is no exogenous

process or distribution assumed that would impact the equilibrium price dynamics.

44



References

Aumann, R. J. and Maschler, M. B. (1995). Repeated Games with Incomplete Information.

MIT Press, Cambridge, MA.

Benabou, R. and Laroque, G. (1992). Using privileged information to manipulate markets:

Insiders, gurus, and credibility. The Quarterly Journal of Economics, 107(3):921–958.

Crawford, V. P. and Sobel, J. (1982). Strategic information transmission. Econometrica,

50(6):1431–1451.

De Meyer, B. (2010). Price dynamics on a stock market with asymmetric information. Games

and Economic Behavior, 69(1):42–71.

De Meyer, B. and Saley, H. M. (2003). On the strategic origin of brownian motion in finance.

International Journal of Game Theory, 31(2):285–319.

Ely, J. (2017). Beeps. American Economic Review, 107(1):31–53.

Ely, J., Frankel, A., and Kamenica, E. (2015). Suspense and surprise. Journal of Political

Economy, 123(1):215–260.

Fama, E. (1970). Efficient capital markets: A review of theory and empirical work. Journal

of Finance, 25(2):383–417.

Foster, F. D. and Viswannathan, S. (1996). Strategic trading when agents forcast the forcasts

of others. Journal of Finance, 51(4):1437–1478.

Glosten, L. R. and Milgrom, P. R. (1985). Bid, ask and transaction prices in a specialist

market with heterogeneously informed traders. Journal of Financial Economics, 14(1):71–

100.

Grossman, S. J. and Stiglitz, J. E. (1980). On the impossibility of informationally efficient

markets. The American Economic Review, 70(3):393–408.

45



Hanson, R. (2003). Combinatorial information market design. Information Systems Fron-

tiers, 5(1):107–119.

Hanson, R. (2007). Logorithmic market scoring rules for modular combinatorial information

aggragation. Journal of Prediction Markets, 3(1):61–63.

Hellwig, M. (1980). On the aggregation of information in competitive markets. Journal of

Economic Theory, 22(3):477–498.

Holden, C. and Subrahmanyam, A. (1992). Long-lived private information and imperfect

competition. Journal of Finance, 47(1):247–270.

Hörner, J. and Skrzypacz, A. (2016). Selling information. Journal of Political Economy,

124(6):1515–1562.

John, K. and Narayanan, R. (1997). Market manipulation and the role of insider trading

regulations. The Journal of Business, 70(2):217–247.

Kamenica, E. and Gentzkow, M. (2011). Bayesian persuasion. American Economic Review,

101(6):2590–2615.

Kyle, A. (1985). Continuous auctions and insider trading. Econometrica, 31(6):1315–1336.

Lipnowski, E. and Ravid, D. (2020). Cheap talk with transparent motives. Econometrica,

88(4):1631–1660.

Mertens, J.-F. and Zamir, S. (1977). Maximal variation of a bounded martingale. Israel

Journal of Math, 27(3-4):252–276.

Morton, F. (1962). The Rothschilds, A Family Portrait. Secker & Warburg, London.

Orlov, D., Skrzypacz, A., and Zryumov, P. (2020). Persuading the principal to wait. Journal

of Political Economy, 128(7):2542–2587.

46



Ostrovsky, M. (2012). Information aggregation in dynamic markets with strategic traders.

Econometrica, 80(6):2595–2647.

Renault, J., Solan, E., and Vieille, N. (2017). Optimal dynamic information provision.

Games and Economic Behavior, 104:329–349.

Samuelson, P. (1965). Proof that properly anticipated prices fluctuate randomly. Industrial

Management Review, 6(2):41–49.

Shiller, R. (1981). Do stock prices move too much to be justified by subsequent changes in

dividends? American Economic Review, 71(3):421–436.

Van Bommel, J. (2003). Rumors. Journal of Finance, 58(4):1499–1520.

Zhong, W. (2022). Optimal dynamic information acquisition. Econometrica, 90(4):1537–

1582.

47



9 Appendix

9.1 Theorem 1

Here I give the remaining details needed for the proof of theorem 1. Take µ < µ∗.

We know that each period beliefs jump down to zero or go up to an interior point that is

equally good for the trader.

P (µ)− P (0) = P (µbuy)− P (µ) + δV (µbuy) (64)

Putting the value function in, we can solve for the posterior induced after buying.

µbuy = P−1

(
2P (µ)− (1− δ)P (0)

1 + δ

)
(65)

from prior µ.

Beliefs being a martingale pins down what the probability of buying and selling must be.

psell =
P−1

(
2P (µ)−(1−δ)P (0)

1+δ

)
− µ

P−1
(

2P (µ)−(1−δ)P (0)
1+δ

) . (66)

Taking limits gives,

lim
δ→1

µbuy = µ (67)

and therefore

lim
δ→1

psell = 0. (68)

Recall that δ = exp−r∆t ≈ 1− r∆t. We now need to show that lim∆t→1
psell
∆t

converges to

a finite positive value. That value is the arrival rate of the Poisson process.

psell
∆t

=
P−1

(
2P (µ)−(1−δ)P (0)

1+δ

)
− µ

P−1
(

2P (µ)−(1−δ)P (0)
1+δ

)
1−δ
r

(69)
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Clearly, the numerator and denominator are both going to zero as δt goes to one. We need

to use L’Hôpital’s rule.

First the derivative of the numerator.

∂top

∂δ
= P−1′

(
2P (µ)− (1− δ)P (0)

1 + δ

)(
P (0)

1 + δ
− 2P (µ)− (1− δ)P (0)

(1 + δ)2

)
(70)

The limit of this is non-zero.

lim
δ→1

∂top

∂δ
=

1

2
P−1′ (P (µ)) (P (0)− P (µ)) (71)

Now the derivative of the denominator.

∂bottom

∂δ
= P−1′

(
2P (µ)− (1− δ)P (0)

1 + δ

)(
P (0)

1 + δ
− 2P (µ)− (1− δ)P (0)

(1 + δ)2

)
1− δ
r

− 1

r
P−1

(
2P (µ)− (1− δ)P (0)

1 + δ

)
(72)

This limit is even simpler.

lim
δ→1

∂bottom

∂δ
= −µ

r
(73)

We now have our arrival rate.

λ(µ) = lim
∆t→0

psell
∆t

(74)

=
P−1′(P (µ))

2µ
(P (µ)− P (0))r (75)

=
P (µ)− P (0)

2P ′(µ)µ
r (76)

The last equality follows from the inverse function theorem.

This gives a Poisson term on beliefs equal to

− µtdNt (77)
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where Nt is a standard Poisson process with arrival rate λ. The drift must be such that

beliefs are a martingale.

driftdt = E[µtdNt] (78)

= µtλ(µt)dt (79)

Beliefs follow

dµt = µtλ(µt)dt− µtdNt. (80)

Since the price is a differentiable function of beliefs, this gives us the process for prices.

dP (µt) = P ′(µt)µtλ(µt)dt− (P (µt)− P (0))dNt (81)

Putting in our equation for λ(µt) gives the result.

dP (µt) =
r

2
(P (µt)− P (0))dt− (P (µt)− P (0))dNt (82)

A symmetric argument holds for µ > µ∗.

9.2 Proposition 2

The maximal time to full information revelation is the amount of time it take beliefs to

drift to µ∗ if the Poisson jump doesn’t arrive. After that, beliefs immediately move to the

boundary. Take µ0 ≤ µ∗. We saw from theorem 1 that

dP (µt) =
r

2
(P (µt)− P (0))dt− (P (µt)− P (0))dNt. (83)

When the Poisson jump doesn’t arrive, the price follows a smooth differentiable path.
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This gives a linear differential equation for prices as a function of time.

dP (µt)

dt
=
r

2
(P (µt)− P (0)) (84)

This implies that the price must be an exponential function in time.

P (µt) = ce
r
2
t − P (0) (85)

We get the constant from the initial condition that the price at time 0 equals P (µ0).

P (µt) = (P (µ0)− P (0))e
r
2
t − P (0) (86)

We then solve for the time at which P (µt) = P (µ∗). This gives the result.

tmax =
2

r
log

(
P (µ∗)− P (0)

P (µ0)− P (0)

)
(87)

If we start with a high initial belief, µ0 > µ∗, the only change in the equations is the use of

P (1) in place of P (0).

9.3 Theorem 2

Here I give the remaining details needed for the proof of theorem 2. The proof is largely

the same as the proof of the main result in Mertens and Zamir (1977). Once you write the

problem as choosing posteriors subject to Bayes’ plausibility, the problem becomes

V (µ) = max
ε̄,ε
|P (µ+ ε̄)− P (µ)| ε

ε̄+ ε
+ |P (µ− ε)− P (µ)| ε̄

ε̄+ ε

+ δ

(
V (µ+ ε̄)

ε

ε̄+ ε
+ V (µ− ε) ε̄

ε̄+ ε

)
. (88)
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First note that for small values of ε̄

|P (µ+ ε̄)− P (µ)| ≈ |P ′(µ)|ε̄ (89)

and the same for ε.

Now take a second order approximation to V (µ′).

V (µ+ ε̄) ≈ V (µ) + V ′(µ)ε̄+
1

2
V ′′(µ)ε̄2 (90)

Then

V (µ+ ε̄)
ε

ε̄+ ε
+ V (µ− ε) ε̄

ε̄+ ε
= V (µ) +

1

2
V ′′(µ)ε̄ε (91)

since the first order term cancels out.

Now (88) becomes

(1− δ)V (µ) = max
ε̄,ε

2|P ′(µ)| ε̄ε
ε̄+ ε

+
1

2
δV ′′(µ)ε̄ε (92)

subject to the posterior remaining between zero and one.

The first term is positive, so for any given level of the product ε̄ε you would like to

minimize the denominator ε̄+ ε. The way to minimize the sum of two variables given a fixed

level of their product is always ε̄ = ε. Call it ε.

(1− δ)V (µ) = max
ε
|P ′(µ)|ε+

1

2
δV ′′(µ)ε2 (93)

Taking the derivative of the right hand side and setting it equal to zero yields

ε∗ = − |P
′(µ)|

δV ′′(µ)
. (94)

Note that this is positive because V (µ) is concave.
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Putting the solution for ε∗ into the objective gives a second order differential equation.

V ′′(µ)V (µ) = − |P
′(µ)|2

2δ(1− δ)
(95)

Define

V̂ (µ) = V (µ)
√

2δ(1− δ). (96)

This gives a simpler differential equation.

V̂ ′′(µ)V̂ (µ) = −|P ′(µ)|2 (97)

While this differential equation is not generally solvable for any function P (µ) we can see

that V̂ (µ) is constant in δ.

This implies that V ′′(µ) is going to minus infinity at rate 1√
δ(1−δ)

≈ 1√
r∆t

.

We now have beliefs following a binomial model,

µ′ − µ =


σ(µ)
√

∆t with probability 1
2

−σ(µ)
√

∆t with probability 1
2

(98)

where

σ(µ) =

√
2r|P ′(µ)|
V̂ ′′(µ)

. (99)

This gives convergence of beliefs to a Brownian motion.

dµt = σ(µ)dBt (100)

Itô’s Lemma gives the price process.

dP (µt) =
1

2
P ′′(µt)σ

2(µt)dt+ P ′(µt)σ(µt)dBt (101)
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